CuNiSi C19010 STOL® 76

Industrial Rolled

Alloy Designation	STOL [®] 76
EN	CuNiSi
DIN CEN/TS 13388	
UNS	C19010

Chemical Composition Weight percentage		
Cu	Rest	%
Ni	0.8 1.8	%
Si	0.15 0.35	%
Others	≤ 0.8	%

This alloy is in accordance with RoHS 2002/96/CE for electric & electronic equipments and 2002/53/CE for automotive industry.

We have developed a wide range of high performance alloys with excellent properties regarding conductivity, strength, corrosion behaviour, bendability and relaxation properties. STOL[®] alloys are the first choice materials for high-end applications and products.

Characteristics

STOL® 76 is a CuNiSi alloy that can be hardened by cold forming and by precipitation of NiSi-phases during a heat treatment. It has excellent bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to 150°C are excellent. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive Switches and Relays, Contacts, Connectors, Terminals Electrical Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components,

Preferred Applicat	tions				
Spring Contact	Switches and Relays	High Temperature Range >130°C	Current Carrying Capacity		
xx	x	хх	ХХ		
x = well suited x	x = particularly w	vell suited			
Physical Properties Typical values in annealed temper at 20 °C					
Density				8.9	g/cm³
Thermal expansion	n coefficient -19 2	91 16 °C 0 300 °C		14.1 16.8	10 ⁻⁶ /K 10 ⁻⁶ /K
Specific heat capa	city			0.377	J/(g·K)
Thermal conductivity				260	W/(m·K)
Electrical conductivity (1 MS/m = 1 m/(Ω mm ²)			35	MS/m	
Electrical conducti	ivity (IACS)			60	%
Thermal coefficient of electrical resistance (0 200 °C)			2.0	10 ⁻³ /K	
Modulus of elasticity (1 GPa = 1 kN/mm ²) cold formed annealed				135 118	GPa GPa

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com

CuNiSi C19010 STOL® 76

Industrial Rolled

Mechanical Properties

Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness
	Rm	Rp _{0.2}	A _{50mm}	HV *
	MPa	MPa	%	HV
R360	360430	300	12	100130
R410	410470	360	9	125 155
R460	460520	410	7	135 165
R520	520580	460	5	145 175
R580 precipitation hardening	580660	520	9	160210

*only for information

Electrical Conductivity

Fabrication Properties*
Cold Forming Properties

Cold Forming Properties Max. 80% between annealings	Excellent
Hot Forming Properties at 750 950°C	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
Soft Annealing	250 650°C, 1 3h
Stress Relieving Annealing	150 200°C, 1 3h

Electrical conductivity is strongly influenced by chemical composition. A high level of cold deformation and small grain size decrease the electrical conductivity moderately. Minimum conductivity level can be specified.

CORTOSION RESISTANCE	Corrosion	Resistance*
----------------------	-----------	--------------------

Resistant to:

STOL® 76 has good corrosion resistance.

The alloy is insensitive to stress corrosion cracking

* For more details call our technical service

* For more details call our technical service

CuNiSi C19010 STOL[®] 76

KME

Industrial Rolled

Bending test according to EN ISO 7438 is done with 10 mm wide samples. Smaller samples in general – as well as lower thickness – allow a lower bending radius without cracks. If needed we supply bending optimized temper classes that far exceed standard quality.

Please take care when comparing with ASTM E 290 results, there the bend definition direction is contradictory.

Bending Definition

Bending Properties*					
Temper	Thickness Range	Bending 90°		Bending 180°	
		Trans- vers	Parallel	Trans- vers	Parallel
	mm	R/T	R/T	R/T	R/T
R360	≤ 0.5	0	0	0	0
R410	≤ 0.5	0	0	0,5	1
R460	≤ 0.5	0,5	1	1,5	3
R520	≤ 0.5	1	2	2,5	4
R580	≤ 0.5	1	1	3	5

* Measured at sample width 10 mm according to EN 1654 Possible bending radius = (R/T) x thickness

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com

Minimum Bending Radius Calculation

To find out the minimum possible bending radius take the R/T value from the list. Example: R/T = 0.5 and thickness 0.3 mm Minimum radius = (R/T) x thickness = 0.5×0.3 mm = 0.15 mm

CuNiSi C19010 STOL[®] 76

KME

Industrial Rolled

Page 4

CuNiSi C19010 STOL[®] 76

<u>KME</u>

Industrial Rolled

Bend Fatigue (at room temperature)

The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 10^7 load cycles without crack is measured. Dependent on the temper class it is approximately 1/3 of the tensile strength R_m.

Standards for copper a	ind copper alloys	
EN 1652	Plate, sheet, strip and circles for general purposes	
EN 1654	Strip for springs and connectors	17
EN 1758	Strip for lead frames	08 20
EN 13148	Hot-dip tinned strip	15
EN 13599	Copper plate, sheet and strip for electrical purposes	R) 76
EN 14436	Electrolytically tinned strip	STOL(

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com