

Industrial Rolled

Alloy Designation	
EN	CuFe0.1P
DIN CEN/TS 13388	
UNS	C19210

Chemical Composition Weight percentage		
Cu	Rest	%
Fe	0.1	%
Р	0.03	%

This alloy is in accordance with RoHS 2002/96/CE for electric & electronic equipments and 2002/53/CE for automotive industry.

Copper Rolled Products

We produce a vast assortment of copper rolled products with highest purity in various in chemical compositions, sizes and formats, all suited to many types of final processing.

Characteristics

CuFe0.1P is a copper alloy with fine iron precipitations. It has a very high conductivity combined with excellent cold forming properties. Softening resistance of low strength tempers is good.

Main Applications

Automotive: Cooling Fins for Radiators, Connector pins Building: Air Conditioning Tubing Electrical: Connectors, Terminals, IC Lead Frames Industrial: Heat Exchanger Tubing, Cooling Fins for Heavy Duty Radiators, Heat Resistant Applications

Preferred Applications

Preferred Applica	ations					
Connector Pins	Electrical Parts	Leadframes for Power Transistors	Current Carrying Capacity			
хх	х	хх	хх			
x = well suited	xx = particularly v	vell suited				
Physical Propert Typical values in		at 20 °C				
Density	Density 8.9 g/cm ³					
Thermal expansion coefficient -191 16 °C 20 300 °C				17	10 ⁻⁶ /К 10 ⁻⁶ /К	
Specific heat capacity 0.385 J/(g·K)						
Thermal conductivity 350 W/(m·K)					W/(m⋅K)	
Electrical conductivity (1 MS/m = 1 m/(Ω mm ²) 50					MS/m	
Electrical conduc	tivity (IACS)			86	%	
Thermal coefficient of electrical resistance (0 100 °C)				3.2	10 ⁻³ /K	
Modulus of elasticity (1 GPa = 1 kN/mm ²) cold formed annealed			125	GPa GPa		

KME Industrial Rolled

Mechanical Properties

Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness
	Rm	Rp _{0.2}	A _{50mm}	HV *
	МРа	MPa	%	HV
R300	300 380	300	10	80110
R360	360 440	260	3	100130
R420	420500	350	2	120 150

*only for information

Electrical Conductivity

Electrical conductivity is strongly influenced by chemical composition. A high level of cold deformation and small grain size decrease the electrical conductivity moderately. Minimum conductivity level can be specified.

Fabrication Properties*

·	
Cold Forming Properties	Excellent
Hot Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
Soft Annealing	
Stress Relieving Annealing	

* For more details call our technical service

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com

Corrosion Resistance*

Resistant to:

Atmospheric corrosion: formation of the a greenish protective patina due to the formation of copper basic salts (such sulphates, chlorides in marine environment, nitrates and carbonates). CuFe0.1P has a good resistance in in natural and industrial atmosphere (maritime air too).

Industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non oxidizing acids (without oxygen in solution) and salts, neutral saline solutions.

Material can be heat-treated in reducing atmosphere.

Practically resistant against stress corrosion cracking

Not resistant to:

Oxidising acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater.

* For more details call our technical service

Bending Properties Thickness: ≤ 0.5 mm

Bending Properties* Temper Thickness Bending 90° Bending 180° Range Parallel Parallel Trans-Transvers vers mm R/T R/T R/T R/T R300 ≤ 0.5 0 0 0 0 R360 ≤ 0.5 0 0 R420 ≤ 0.5

* Measured at sample width 10 mm according to EN 1654 Possible bending radius = (R/T) x thickness Bending test according to EN ISO 7438 is done with 10 mm wide samples. Smaller samples in general – as well as lower thickness – allow a lower bending radius without cracks. If needed we supply bending optimized temper classes that far exceed standard quality.

Please take care when comparing with ASTM E 290 results, there the bend definition direction is contradictory.

Bending Definition

Minimum Bending Radius Calculation

To find out the minimum possible bending radius take the R/T value from the list. Example: R/T = 0.5 and thickness 0.3 mm Minimum radius = (R/T) x thickness = 0.5×0.3 mm = 0.15 mm

Softening Resistance

After short time heat treatment Vickers Hardness is measured. The diagram shows typical values.

Bend Fatigue (at room temperature)

The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 10^7 load cycles without crack is measured. Dependent on the temper class it is approximately 1/3 of the tensile strength R_m .

Camber

Evenness

Coil set

L

h

Transverse Flatness

Evenness Tolerance

Thickness Range

0.10 .. 0.50

0.50..1.00

[mm]

Width Range

21..50

+0.20

+0.25

[mm]

7..20

+0.10

+0.15

tolling direction

Rolling direction

Rolling direction

angle

Rolling direction

Twist

KME Industrial Rolled

Our products are produced in accordance with relevant norms EN 1652 / EN 1654. Customer specific tolerances for Thickness, Width, Camber, Transverse Flatness, Evenness, Twist and Coil set can be defined. We will be happy to meet your demands. EN 1652 defines only camber.

Thickness Toler	ance		
Thickness Range [mm]	EN 1652 ≤350 mm [mm]	KME Standard [mm]	KME Precision [mm]
0.10 0.20	± 0.018	± 0.005	± 0.004
0.210.30	± 0.022	± 0.007	± 0.005
0.310.40	± 0.025	± 0.015	± 0.006
0.41 0.50	± 0.030	± 0.015	± 0.008
0.51 0.60	± 0.040	± 0.017	± 0.010
0.610.70	± 0.040	± 0.020	± 0.010
0.71 0.85	± 0.040	± 0.022	± 0.012
0.86 1.30	± 0.050	± 0.025	± 0.015
1.31 2.00	± 0.060	± 0.030	± 0.020
2.01 3.00	± 0.070	± 0.045	± 0.025
3.00 4.00	± 0.100	± 0.050	± 0.025
4.00 6.00	± 0.120	± 0.060	± 0.030

Roughness	
Ra [µm]	Thickness [mm]
0.13 0.18	0.1 2.0
0.200.30	0.1 2.0
0.35 0.46	0.12.0
On request	> 2.0

Width Tolerance	e Standard / Precis	ion				
Thickness Range [mm]	Width Range [mm]					
	1050	51100	101200	201 350	351700	700 1.250
0.101.00	+0.2 / +0.1	+0.3 / +0.2	+0.4 / +0.3	+0.6 / +0.4	+1.0 / +0.5	-
0.201.00	+0.2 / +0.1	+0.3 / +0.2	+0.4 / +0.3	+0.6 / +0.4	+1.0 / +0.5	+2.0
1.012.00	+0.3 / +0.2	+0.4 / +0.2	+0.5 / +0.4	+1.0 / +0.6	+1.5 / +0.7	+2.0
2.013.00	+0.5 / +0.3	+0.6 / +0.3	+0.7 / +0.5	+1.2 / +0.7	+2.0 / +0.9	+3.0
3.016.00	+2.0 / -	+2.3 / -	+2.5 / -	+3.0 / -	+4.0 / -	+6.0

51..100

+0.30

+0.35

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com

MADE Industrial Rolled

Formats		Dimension*		
	Coil	Strip thickness (other thicknesses on request) Strip width Outside diameter Weight (Standard) Weight (Deep-Drawing Quality) Weight per mm	≥ 0.1 6.00 ≥ 3 1.250 ≤ 1.400 ≤ 8.400 ≤ 8.000 ≤ 12.0	mm mm kg kg kg
	Traverse wound strip	Thickness Width Weight Drums: wood, plastic, metal, flangeless	≥ 0.2 ≤ 1.50 ≥ 8 ≤ 60.0 300 1.500	mm mm kg
	TEC STRIP® _multicoil	Thickness Width Inner diameter 300mm for thickness Inner diameter 400mm for thickness Maximum weight Outer diameter maximum	0.18 0.80 15 50 0.15 0.80 0.41 0.80 5.000 1.600	mm mm mm kg mm
	Sheet ≤ 6.35 mm	Thickness Width Length Weight Sheets in standard dimensions e.g. 1,000 x 2,000 mm on stock	0.3 6.35 501.250 200 6.500 2.800 8.000	mm mm mm kg
	Sheet > 6.35 mm	Thickness Width Length Weight Sheets in standard dimensions e.g. 1,000 x 2,000 mm	6.35 9.50 50 2.450 200 7.500 ≤ 10.000	mm mm kg
	Plate	Thickness Width Length Weight	9.5 150 ≤ 4.500 ≤ 15.000 ≤ 8.000	mm mm kg
2	Disc	Thickness Diameter Weight	0.3 150 20 3.100 ≤ 10.000	mm mm kg

* Some combinations might not be possible

Surface coatings & S	Special Treatments *	Dimension		
	Hot-Dip tinned and STOL®28M Tin-Silver STOL®13 Thermic Sn Different thickness per side possible	Width Thickness Tin Layer Thickness	≤ 330 ≤ 1.5 0.4 20	mm mm μm
	Electroplating Tin, Silver, Gold, Cu-Flash, Ni-Flash, Selective plating	Width Thickness Other coatings on request	≤ 400 ≤ 2.5	mm mm
	Profiled strips STOL®Multigauge	Width Thickness Other width on request	15 90 0.23 1	mm mm
	Surface with extra low residual carbon content possible. Protection with oil or adhesive foil on request			

* Further details you find at www.kme.com

Standards for copp	er and copper alloys	
EN 1652	Plate, sheet, strip and circles for general purposes	
EN 1654	Strip for springs and connectors	
EN 1758	Strip for lead frames	0
EN 13148	Hot-dip tinned strip	04_2019
EN 13599	Copper plate, sheet and strip for electrical purposes	5
EN 14436	Electrolytically tinned strip	CuAgo-

©KME Germany GmbH & Co. KG - www.kme.com - info-germany@kme.com