

COPPER MATERIALS

Copper and copper alloys for semi products and stamped parts
September 2025

KME-ON THE WAY TO CLIMATE NEUTRALITY

ENERGY MANAGEMENT - COPPER RECYCLING - KME ECOLOGICAL COPPER

The transformation of production methods and operational processes towards climate neutrality is the focus of KME's targeted development. We report our CO_2 emissions on a voluntary basis as part of the CDP*) sustainability ranking.

With **KME ECOLOGICAL COPPER**, KME offers materials with a particularly climate-friendly CO2 balance:

Made entirely from 100% copper scrap without the use of primary raw materials.

Avoidance of the use of new metals, which are extremely energy-intensive to produce, thereby reducing CO2 emissions in production by 90%.

Independent inspection and certification of **KME ECOLOGICAL COPPER** manufacturing processes by external bodies.

Further information on this can be found in the KME Sustainability Report, which is available for download on our homepage.

*) CDP is a non-profit organization that promotes transparent climate reporting

Contact: info-sustainability@kme.com

© Adobe Stock

©KME - www.kme.com

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

5.2.

5.3.

5.4.

5.5.

5.6.

5. Copper-Nickel 5.1.

1. Programme	of KME	6. Copper-Nickel-Silicium Alloys			
1.1.	Manufacturing programme	6.1.	C19005 - STOL® 76M – CuNiSi		
1.2.	KME Stamping Center Osnabrück	6.2.	C19010 - STOL® 76 - CuNiSi		
		6.3.	C70250 - CuNi3SiMg		
2. Copper		6.4.	C70315 - STOL® 94 - CuNiSi		
2.1.	C11000 - Cu-ETP				
2.2.	C10300 - Cu-HCP	7. Copper-Chromi	ium Alloys		
2.3.	C10300 - Cu-PHC	7.1.	C18070 - STOL® 75 - CuCrSiTi		
2.4.	C12200 - Cu-DHP	7.2.	C18080 - STOL® 88 - CuCrAgFeSiTi		
2.5.	C10200 - Cu-OF - CW008A	7.3.	C18160 - STOL® 95 - CuCrZr		
2.6.	C10100 - Cu-OFE - CW009A				
		8. General Coppe	r Alloys		
3. Brass		8.1.	C14530 - CuTeSn		
3.1.	C22000 - CuZn10	8.2.	C15500 - CuMgAgP		
3.2.	C23000 - CuZn15	8.3.	C18665 - STOL® 78 - CuMg		
3.3.	C26000 - CuZn30	8.4.	C19400 - STOL® 194 - CuFe2P		
3.4.	C26800 - CuZn33				
3.5.	C27000 - CuZn36	9. Comparison			
3.6.	C27200 - CuZn37	9.1.	Tensile Strength vs. el. Conductivity		
4. Bronze		10. Material Data			
4.1.	CuSn0,04	10.1.1.	Relaxation		
4.2.	CuSn0,09	10.1.2.	Relaxation		

C14415# - STOL® 81 - CuSn0,15

C14410 - STOL® 80 - CuSn0,2

C50715 - CuSn2Fe0,1P

C50725 - CuSn2Zn2Fe

C51100 - CuSn4

C51000 - CuSn5

C51900 - CuSn6

C52100 - CuSn8

C52400 - CuSn10

C70600 - CuNi10Fe1Mn

C75700 - CuNi12Zn24

C73500 - CuNI18Zn10

C77000 - CuNi18Zn27

C76400 - CuNi18Zn20

C79200 - CuNi12Zn25Pb1

11.	Coating

11.1. Overview

12. Sheets, Plates and Discs

10.2.

10.3.

10.4.

10.5.

neces, i laces and Bises				
12.1.	Copper			
12.2.	Copper			
12.3.	Brass			
12.4.	Brass			
12.5.	Brass			
12.6.	Special alloys			
12.7.	Special alloys			
12.8.	Special alloys			

13. General information

Warehousing of our products 13.1.

Softening behaviour

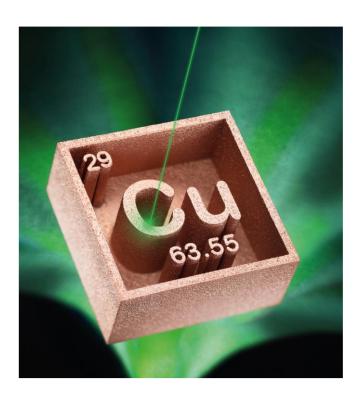
Definitions

Definition bending axle

Bend fatigue at room temperature

13.2. Corrosion resistance

[#] small difference in chemical composition


3D-PRINTING WITH COPPER

AN INNOVATIVE MANUFACTURING TECHNOLOGY BASED ON KME EXPERTISE

Additive manufacturing (AM) is a process that directly utilizes digital design data to create fully functional objects. Among the various AM techniques, selective laser melting (SLM) stands out as the optimal solution for the forward-looking production of copper components using 3D printing.

In collaboration with Osnabrück University of Applied Sciences, KME is developing an optimized process to transition copper material processing from research and development (R&D) to full-scale production. This method involves applying thin layers of copper material on top of each other to construct three-dimensional workpieces. The advanced 3D printers used in this process offer a particularly exciting capability: melting copper powder with a laser and fusing it into virtually any desired shape.

As part of the TECHNOS e.V. cooperation, KME continues to refine the selective laser melting (SLM) technique, ensuring its effective application in 3D printing with copper.

Contact: info-3D-printing@kme.com . Tel +49 (0)541/321-1177

©KME - www.kme.com

COPPER MATERIALS

1.1. MANUFATURING PROGRAM

Thickness range: 0.05 − 6.00 mm*
 Width range: 10 − 1220 mm*

*)Other ranges on request

Strips

- Bare strips
- Pre tinned strips
 - by hot dip tinning (Strip thickness: 0.10 1.20 mm)
 - by electro plating

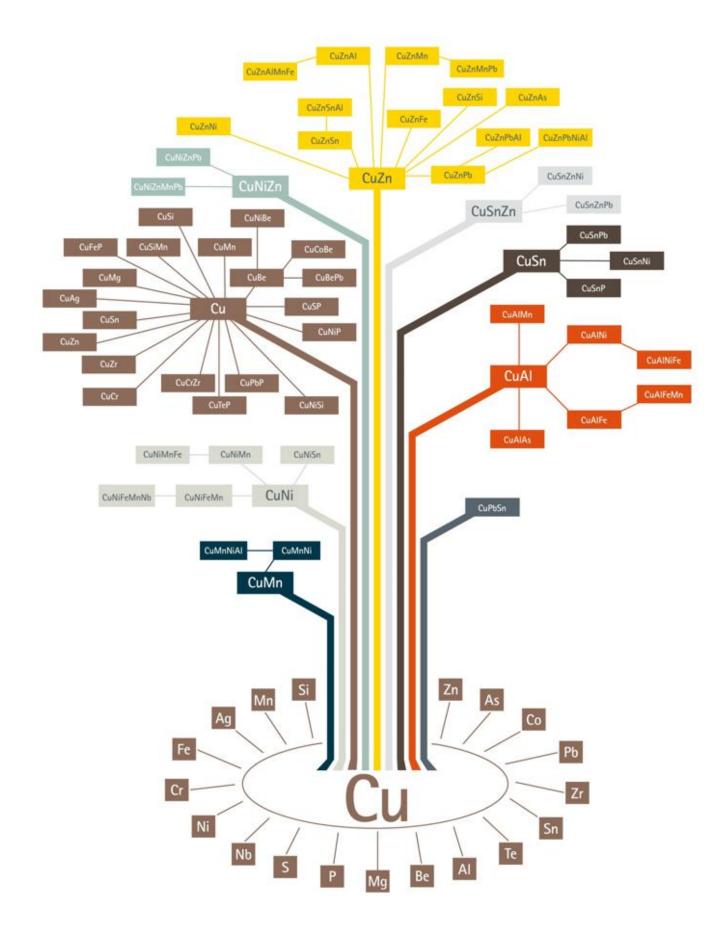
Special qualities

- narrow tolerances
- stress relieved
- stress annealed

Traverse wound strips

- drum weight: 300 1.500 kg
- wooden, plastic and metal drums
 - with flange and flange less
- TECSTRIP®_multicoil

- thickness: 0.15 - 0.80 mm


- width: 15 - 50 mm

- max. pallet weight: 2.500 kg *

Pre stamped-and finish products

^{*)} higher pallet weights on request

kupfer_

©KME - www.kme.com

TECHNICAL INFORMATION

1.2. Width and thickness tolerances

Unless otherwise agreed, we manufacture our strips according to the current European standards for rolled flat products made of copper and copper alloys.

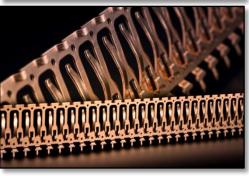
For thickness and width tolerances, we can comply with half the value of the standard specifications. Tighter tolerances are also possible on request. Please contact us for this.

Unless otherwise agreed, this handout will be used as a basis.

STAMPING-CENTER OSNABRÜCK

1.3. OVERVIEW

- When it comes to high-quality stamped and formed parts with maximum precision at a high technical level, we are your partner.
- We offer fully integrated manufacturing chain
 - Advice on materials
 - Hot Dip Tinned, electro platedand coating of stamped parts
 - Manufacturing of stamped parts especially for material-intensive products
 - Recycling of stamping parts
 - Metal management
- We will send you an overall concept tailored to your needs


	High speed presses (Bruderer)	Presses (Haulick & Roos)	
Pressing force	500 kN	1,600 - 3,000 kN	
Stroke rate max. 1,100 strokes/min		max. 300 strokes/min	
Tool length	max. 1,100 mm	max. 2,500 mm	
Material quality	all standard material qualities	all standard material qualities	
Material width	max. 200 mm	max. 400 mm	
Material thickness	up to primarily 1 mm	up to primarily 5 mm	

Contact person:

Mr. Marc Kovermann Technical Sales Manager stamped products

Mr. Malte Wiemeyer Sales Manager stamped products

KME - ELOPIN® FOR INNOVATIVE PRESS-FIT TECHNOLOGY

As a licensee of press-fit technology using EloPin®, KME offers this connection technology for high-quality solderfree and gas-tight electrical connections in the field of PCB contacting with connectors. Stamped parts with pressfit zones are then usually further processed into hybrid parts or electromechanical assemblies.

In press-fit technology with EloPin®, connectors can be inserted into circuit boards and printed circuit boards without additional soldering, in order to subsequently guarantee a smooth energy and data transport in practice by means of simple plugging. No damage whatsoever occurs during assembly and high flexibility is guaranteed during use.

KME's high-performance materials for press-fit technology also come into play where high-pole plug connections are produced quickly and cost-effectively. KME copper alloy materials are reliable for use in highly stressed components such as in the automotive and electronics industries.

KME materials in the alloy groups CuSn, CuNiSi, and CuCr meet special requirements when used in press-fit zones and show their best side when used in a wide range of temperature ranges:

- If the operating temperature is max. 105 °C, CuSn6 (C51900) offers an excellent combination of strength, cold formability and hardness. It is wear resistant, has good corrosion resistance and good soldering properties.
- At operating temperatures of max. 135 °C CuNiSi STOL° 76M (C19005) is the ideal material for applications in electro-mechanical components. The material is characterized by medium conductivity, good bending properties and good relaxation resistance.
- If the application temperature is ≥ 135 °C, the material C70250 comes into play. The higher alloy CuNiSi alloy has excellent bending properties, high strength and good relaxation properties.
- An excellent alternative if used ≥ 135 °C for applications in electrical engineering can be the material CuCrSiTi STOL® 75 (C18070) with high conductivity and good relaxation resistance.
- If the application temperature can reach values up to 20°C, CuCrZr STOL °95 (C18160) would be a possible alternative for applications in the electromobility sector, among others, that still needs to be tested. Electromobility, for example, as this material offers an unbeatable combination of maximum conductivity good bending properties and very good relaxation resistance.

2.1. Cu-ETP

Alloy Designation	
EN	Cu-ETP
DIN CEN/TS 13388	CW004A
UNS	C11000

Characteristics

Cu-ETP is an oxygen containing copper which has a very high electrical and thermal conductivity. It has excellent forming properties. Due to its oxygen content soldering and welding properties are limited.

Main Applications

Electrical: Transformer Coils, Switches, Terminals, Contacts, Radio Parts, Busbars, Terminal Connectors, Conductors, Stranded Conductors, Cable Strip

Industrial: Printed circuit boards, Stamped parts, Pressure Vessels, Chemical Process Equipment, Chlorine Cells, Chimney Cap Screens, Heat Exchangers, Printing Rolls, Anodes, Rotating Bands, Kettles, Pans, Vats, Heat sinks

Chemical Composition Weight percentage	(Balance)	
Cu	≥ 99.90	%
0	≤ 0.040	%

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ability 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g radius R/T
	MPa	MPa	%	HV	Strip thickne	ess ≤ 0.50mm
R200	200 250	≤ 100 *	33	40 65	0	0
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0.5
R360	≥ 360	320	2	≥ 110	1	2

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.92	g/cm³		
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K		
Specific heat capacity		0.394	J/(g·K)		
Thermal conductivity		394	W/(m·K)		
Electrical conductivity	MS/m	58	MS/m		
Electrical conductivity	IACS	100	%		
Thermal coefficient of electrical resistance	(0 100 °C)	3.7	10 ⁻³ /K		
Modulus of elasticity	GPa	130	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Less suitable
Laser Welding	Less suitable

During heating in reducing atmosphere hydrogen can penetrate inside the copper and react with Cu-Oxide to water vapour. Its pressure can cause embrittlement.

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

^{*} For more details call our technical service

2.2. Cu-HCP

Alloy Designation	
EN	Cu-HCP
DIN CEN/TS 13388	CW021A
UNS	C10300

(Balance)	
≥ 99.95	%
≤ 0.004	%
	233.33

Characteristics

Cu-HCP is a high purity, low level residual phosphorus, deoxidized copper. It has a very high electrical and thermal conductivity, good welding and soldering properties as well as resistance to hydrogen. It has excellent hot and cold forming properties, and a good corrosion resistance in water and especially in atmosphere (including industrial atmosphere).

Main Applications

Electrical: High Frequency Cable, Submarine Cable Strips, Wave Guide Tubing, Standard material for longitudinally welded cables, Commutators, Applications Requiring High Conductivity, Tubular Bus, Electrical Conductors, Clad Products, Busbars, Terminals, Thermostatic Control Tubing

Industrial: Applications Requiring Good Brazing, Applications Requiring Good Weldability, Pressure Vessels, Billet Mold Tube, Extrusion Cans for Powder Metallurgy

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R200	200 250	≤ 100 *	33	40 65	0	0
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0
R360	≥ 360	320	2	≥ 110	0	0.5

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.92	g/cm³		
Thermal expansion coefficient	20 300 °C	16.9	10 ⁻⁶ /K		
Specific heat capacity		0.385	J/(g·K)		
Thermal conductivity		385	W/(m·K)		
Electrical conductivity	MS/m	57	MS/m		
Electrical conductivity	IACS	98	%		
Thermal coefficient of electrical resistance	(0 100 °C)	3.7	10 ⁻³ /K		
Modulus of elasticity	GPa	130	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding (Spot / But)	Less suitable / Good
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

2.3. Cu-PHC

Alloy Designation	
EN	Cu-PHC
DIN CEN/TS 13388	CW020A
UNS	C10300

	Char
	Cu-P
	It ha

Cu-PHC is a high purity, low level residual phosphorus, deoxidized copper. It has a very high electrical and thermal conductivity, good welding and soldering properties as well as resistance to hydrogen. It has excellent hot and cold forming properties, and a good corrosion resistance in water and especially in atmosphere (including industrial atmosphere). Cu-PHC has a higher conductivity than Cu-HCP.

Main Applications

acteristics

Electrical: High Frequency Cable, Submarine Cable Strips, Wave Guide Tubing, Standard material for longitudinally welded cables, Commutators, Applications Requiring High Conductivity, Tubular Bus, Electrical Conductors, Clad Products, Busbars, Terminals, Thermostatic Control Tubing

Industrial: Applications Requiring Good Brazing, Applications Requiring Good Weldability, Pressure Vessels, Billet Mold Tube, Extrusion Cans for Powder Metallurgy

Weight percentage	(Balance)	
Cu	≥ 99.95	%
P	≤ 0.003	%

Mechanical Prope	rties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		nding 10°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R200	200 250	≤ 100 *	33	40 65	0	0
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0
R360	≥ 360	320	2	≥ 110	0	0.5

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.92	g/cm³	
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K	
Specific heat capacity		0.385	J/(g·K)	
Thermal conductivity		385	W/(m·K)	
Electrical conductivity	MS/m	58	MS/m	
Electrical conductivity	IACS	100	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3.7	10 ⁻³ /K	
Modulus of elasticity	GPa	130	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding (Spot / But)	Less suitable / Good
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

2.4. Cu-DHP

Alloy Designation	
EN	Cu-DHP
DIN CEN/TS 13388	CW024A
UNS	C12200

Characteristics

Cu-DHP is a phosphorus-deoxidized copper with a limited, high amount of residual Phosphorus. It has excellent welding and soldering properties and is resistant against hydrogen embrittlement. It can be deformed excellent, either hot or cold.

Chemical Compos Weight percentage		
Cu	≥ 99.90	%
P	0.015 - 0.040	%

Main Applications

Electrical: Wire Connectors, Heater Elements

Industrial: Construction, Rotating Bands, Kettles, Anodes for Electroplating, Heat Exchanger Shells, Oil Coolers in Airplanes, Tanks, Casting Molds, LP Gas Service, Medical Gas-Oxygen, Plating Anodes, Plating Racks, Plating Hangers, Marine Oil Coolers

Mechanical Properties	;					
Temper	Tensile Strength Rm	Yield Strength Minimum Rp _{0.2}	Elongation Minimum A _{50mm}	Hardness HV *		ding 0° bw
	••••		50mm		_	g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0
R360	≥ 360	320	2	≥ 110	0	0.5

^{*} only for information

Physical Properties Typical values in annealed to	emper at 20 °C		
Density		8.94	g/cm³
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K
Specific heat capacity		0.386	J/(g·K)
Thermal conductivity		330	W/(m⋅K)
Electrical conductivity	MS/m	47	MS/m
Electrical conductivity	IACS	81	%
Thermal coefficient of electrical resistance	(0 100 °C)	3.4	10 ⁻³ /K
Modulus of elasticity	GPa	130	GPa

Excellent
Less suitable
Excellent
Excellent
Excellent
Less suitable
Excellent
Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

2.5. Cu-OF

Alloy Designation	
EN	Cu-OF
DIN CEN/TS 13388	CW008A
UNS	C10200

Characteristics

Cu-OF is a high purity, oxygen free, non phosphorus-deoxidized copper that does not contain in vacuum evaporating elements. It has a very high electrical and thermal conductivity, good welding and excellent soldering properties. It has excellent hot and cold forming properties, and a good corrosion resistance, especially in atmosphere due to a good adherence of the oxide layer.

Main Applications

Automotive: Automotive Rectifiers

Electrical: Transistor Component Bases, High Resistance-Ratio Cryogenic Shunts, Bus Conductors, Wave Guides, Hollow Conductors, Anodes for Vacuum Tubes, Coaxial Cable, Waveguides, High Frequency Cable, Submarine Cable, Coaxial Tube, Klystrons, Microwave Tubes, Bus Bars, Lead-in Wire, Vacuum Seals, Conductors, Glass-to-Metal Seals, Lead frames for semiconductors, Heat sinks.

Chemical Composition (Balance) Weight percentage

≥ 99.95

%

IVIC	, i i di i i c	41 1 1	Opci	tic3

iviechanicai Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		oding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R200	200 250	≤ 100 *	33	40 65	0	0
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0
R360	≥ 360	320	2	≥ 110	0	0.5

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.93	g/cm³	
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K	
Specific heat capacity		0.39	J/(g·K)	
Thermal conductivity		394	W/(m·K)	
Electrical conductivity	MS/m	58	MS/m	
Electrical conductivity	IACS	100	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3.81	10 ⁻³ /K	
Modulus of elasticity	GPa	130	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

2.6. Cu-OFE

Alloy Designation	
EN	Cu-OFE
DIN CEN/TS 13604	CW009A
UNS	C10100

Alloy Designation	
EN	Cu-OFE
DIN CEN/TS 13604	CW009A
UNS	C10100

Chemical Composition (Balance) Weight percentage

Cu ≥ 99.99

Characteristics

Cu-OFE is a high-purity, oxygen-free copper, that does not contain elements that can vaporise in a vacuum environment. It is very thermally and electrically conductive and it also performs extremely well during hot and cold forming. Cu-OFE is corrosion-resistant, especially against atmospheric influences and water, and is also insensitive to stress corrosion cracking.

Main Applications

%

Cu-OFE is a popular material in electrical engineering, vacuum engineering and the production of high-frequency cables.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	МРа	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R200	200 250	≤ 100 *	33	40 65	0	0
R220	220 260	≤ 140 *	33	40 65	0	0
R240	240 300	180	8	65 95	0	0
R290	290 360	250	4	90 110	0	0
R360	≥ 360	320	2	≥ 110	0	0.5

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.93	g/cm³	
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K	
Specific heat capacity		0.39	J/(g·K)	
Thermal conductivity		394	W/(m·K)	
Electrical conductivity	MS/m	58.6	MS/m	
Electrical conductivity	IACS	101	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3.81	10 ⁻³ /K	
Modulus of elasticity	GPa	130	GPa	

Excellent
Less suitable
Excellent
Excellent
Excellent
Less suitable
Excellent
Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

3.1. CuZn10

Alloy Designation	
EN	CuZn10
DIN CEN/TS 13388	CW501L
UNS	C22000

Chemical Composition (Balance) Weight percentage		
Cu	90	%
Zn	Rest	%

Characteristics

CuZn10 has very good cold forming properties and is well suited for e.g. coinage, beating, embossing. This alloy has a higher strength as pure copper. It has good welding and brazing properties as well as a good corrosion resistant and is not fragile to stress corrosion and dezincification. **CuZn10** is principally used in jewellery, metal goods, watch industry and in electronic industry for installation parts.

Main Applications

Jewellery and metal good, Components for the electrical industry.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R240	240 290	≤ 140 *	36	50 100	0	0
R280	280 360	200 *	13	80 130	0	0
R350	350 450	290 *	4	110 160	-	-

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.80	g/cm³		
Thermal expansion coefficient	20 300 °C	18.2	10 ⁻⁶ /K		
Specific heat capacity		0.376	J/(g·K)		
Thermal conductivity		184	W/(m·K)		
Electrical conductivity	MS/m	25	MS/m		
Electrical conductivity	IACS	43	%		
Thermal coefficient of electrical resistance	(0 100 °C)	1.8	10 ⁻³ /K		
Modulus of elasticity	GPa	124	GPa		

Fabrication Properties *	
Cold Forming Properties	Good
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

3.2. CuZn15

Alloy Designation	
EN	CuZn15
DIN CEN/TS 13388	CW502L
UNS	C23000

Chemical Composition (Balance) Weight percentage		
Cu	85	%
Zn	Rest	%

Characteristics

CuZn15 has very good cold forming properties and is well suited for e.g. coinage, beating, embossing. This alloy has a higher strength as pure copper. It has good welding and brazing properties as well as a good corrosion resistant and is not fragile to stress corrosion and dezincification. **CuZn15** is principally used in jewellery, metal goods, watch industry and in electronic industry for installation parts.

Main Applications

Jewellery and metal good, Components for the electrical industry, Cladding Panels.

Mechanical Prope	rties					
Temper Tensile Strength		Yield Strength Elongation Minimum Minimum		Hardness	Bending 90°	
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	МРа	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	300 370	≤ 170 *	16	85 120	0	0
R350	350 420	270 *	8	100 150	0	0
R410	410 490	360 *	3	125 155	0	1
R480	480 560	420 *	1	150 180	1	3
R550	≥ 550	480 *	-	≥ 170	-	-

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.75	g/cm³		
Thermal expansion coefficient	20 300 °C	18.5	10 ⁻⁶ /K		
Specific heat capacity		0.377	J/(g·K)		
Thermal conductivity		159	W/(m·K)		
Electrical conductivity	MS/m	20	MS/m		
Electrical conductivity	IACS	34	%		
Thermal coefficient of electrical resistance	(0 100 °C)	2.6	10 ⁻³ /K		
Modulus of elasticity	GPa	122	GPa		

Fabrication Properties *	
Cold Forming Properties	Good
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

3.3. CuZn30

Alloy Designation	
EN	CuZn30
DIN CEN/TS 13388	CW505L
UNS	C26000

Chemical Composition (Balance) Weight percentage		
Cu	70	%
Zn	Rest	%

Characteristics

CuZn30 combines excellent cold forming properties with good mechanical strength. CuZn30 has good hot forming properties and excellent soldering and brazing properties. Due to the outstanding deep drawing properties CuZn30 called "deep-draw" or "cartridge" brass.

Main Applications

Terminal Connectors, Flashlight Shells, Lamp Fixtures, Reflectors, Screw Shells, Fasteners, Electrical Sockets, Lamps.

Mechanical Prope	rties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness	Bending 90°	
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ss ≤ 0.50mm
R270	270 350	≤ 170 *	40	55 105	0	0
R350	350 430	270 *	21	95 125	0	0
R410	410 490	350 *	9	120 180	0	1
R480	480 570	430 *	4	150 190	0,5	2
R550	550 640	480 *	2	170 210	1	3
R630	≥ 630	560 *	-	≥ 190	-	-

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.53	g/cm³	
Thermal expansion coefficient	20 300 °C	19.7	10 ⁻⁶ /K	
Specific heat capacity		0.377	J/(g·K)	
Thermal conductivity		126	W/(m·K)	
Electrical conductivity	MS/m	16	MS/m	
Electrical conductivity	IACS	28	%	
Thermal coefficient of electrical resistance	(0 100 °C)	1.5	10 ⁻³ /K	
Modulus of elasticity	GPa	115	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Fair
Laser Welding	Less suitable

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

©KME - www.kme.com

3.4. CuZn33

Alloy Designation	
EN	CuZn33
DIN CEN/TS 13388	CW506L
UNS	C26800

Chemical Composition (Balance) Weight percentage		
Cu	67	%
Zn	Rest	%

Characteristics

CuZn33 combines excellent cold forming properties with good mechanical strength. CuZn30 has good hot forming properties and excellent soldering and brazing properties. Due to the outstanding deep drawing properties CuZn30 called "deep-draw" or "cartridge" brass.

Main Applications

Metal goods, Deep drawn parts, Components for the electrical industry, stamped parts, Connectors.

Mechanical Propertie	S					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness	Ben 90	0.
	Rm	Rp _{0.2}	A _{50mm}	HV *	g w rel. Bending	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ss ≤ 0.50mm
R280	280 380	≤ 170 *	44	55 95	0	0
R350	350 430	170 *	23	95 125	0	0
R420	420 500	300 *	6	125 155	0	0
R500	≥ 500	450 *	3	≥ 155	0,5	0,5

^{*} only for information

Physical Properties Typical values in annealed t	temper at 20 °C		
Density		8.47	g/cm³
Thermal expansion coefficient	20 300 °C	19.9	10 ⁻⁶ /K
Specific heat capacity		0.377	J/(g·K)
Thermal conductivity		121	W/(m·K)
Electrical conductivity	MS/m	15	MS/m
Electrical conductivity	IACS	26	%
Thermal coefficient of electrical resistance	(0 100 °C)	1.6	10 ⁻³ /K
Modulus of elasticity	GPa	112	GPa

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Fair
Laser Welding	Less suitable

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

3.5. CuZn36

Alloy Designation	
EN	CuZn36
DIN CEN/TS 13388	CW507L
UNS	C27000

Chemical Composition (Balance) Weight percentage		
Cu	64	%
Zn	Rest	%

Characteristics

CuZn36 is the major brass alloy for the cold forming process. Even though brasses with lower Zinc content have better cold forming properties, CuZn36 is the most used alloy. Reasons for this are on the one hand economical due to lower price of Zinc compared to Copper, on the other hand the forming properties of this alloy meet the demand of many applications.

Main Applications

Metal goods, Deep drawn parts, Stamped parts, Connectors.

Mechanical Prope	rties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness	Ben 90	ding O°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	300 370	≤ 180 *	38	55 105	0	0
R350	350 430	170 *	19	95 125	0	0
R410	410 490	300 *	8	120 155	0	0
R480	480 560	430 *	3	150 180	0,5	2
R550	≥ 550	500 *	-	≥ 170	1	3
R630	≥ 630	600 *	-	≥ 190	-	-

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.47	g/cm³	
Thermal expansion coefficient	20 300 °C	20.2	10 ⁻⁶ /K	
Specific heat capacity		0.377	J/(g·K)	
Thermal conductivity		121	W/(m·K)	
Electrical conductivity	MS/m	14	MS/m	
Electrical conductivity	IACS	24	%	
Thermal coefficient of electrical resistance	(0 100 °C)	1.7	10 ⁻³ /K	
Modulus of elasticity	GPa	110	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Fair
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Fair
Laser Welding	Less suitable

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

3.6. CuZn37

Alloy Designation	
EN	CuZn37
DIN CEN/TS 13388	CW508L
UNS	C27200

Chemical Composition (Balance) Weight percentage		
Cu	63	%
Zn	Rest	%

Characteristics

CuZn37 is the major brass alloy for the cold forming process. Even though brasses with lower Zinc content have better cold forming properties, CuZn37 is the most used alloy. Reasons for this are on the one hand economical due to lower price of Zinc compared to Copper, on the other hand the forming properties of this alloy meet the demand of many applications.

Main Applications

Metal goods, Deep drawn parts, Stamped parts, Connectors.

Mechanical Prope	rties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness	Ben e	•
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	300 370	≤ 180 *	38	55 105	0	0
R350	350 430	170 *	19	95 125	0	0
R410	410 490	300 *	8	120 155	0	0
R480	480 560	430 *	3	150 180	0,5	2
R550	≥ 550	500 *	-	≥ 170	1	3
R630	≥ 630	600 *	-	≥ 190	-	-

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.47	g/cm³	
Thermal expansion coefficient	20 300 °C	20.2	10 ⁻⁶ /K	
Specific heat capacity		0.377	J/(g·K)	
Thermal conductivity		121	W/(m⋅K)	
Electrical conductivity	MS/m	14	MS/m	
Electrical conductivity	IACS	24	%	
Thermal coefficient of electrical resistance	(0 100 °C)	1.7	10 ⁻³ /K	
Modulus of elasticity	GPa	110	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Fair
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Fair
Laser Welding	Less suitable

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.1. CuSn0.04

Alloy Designation	
EN	-
DIN CEN/TS	-
UNS	-

Chemical Co Weight perc	mposition (Balance) entage	
Cu	≥ 99.90	%

0,015 - 0,055

Characteristics

CuSn0.04 is an in-house developed alloy and is specifically used for radiator fin applications. The alloy has excellent thermal properties. Hot and cold formability is very good (which makes it ideal for engine cooling applications where heat transfer is critical).

The tin addition improves mechanical properties and, as such, contributes to a sturdy final product.

Mechanical Properties				
Temper	Tensile Strength	Yield Strength Minimum Rp _{0.2}	Elongation Minimum A _{50mm}	Hardness HV *
	Rm		- Summ	
	MPa	MPa	%	HV
R220	220 275	80	15	53 65
R255	255 315	190	4	80 100
R260	260 330	210	3	85 110
R280	280 360	240	1	95 120
R330	330 410	300		105 130
R355	355 435	330		115 140
R390	390 475	370		125 150

^{*} only for information

Sn

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.93	g/cm³	
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K	
Specific heat capacity		0.385	J/(g·K)	
Thermal conductivity		360	W/(m·K)	
Electrical conductivity	MS/m	53	MS/m	
Electrical conductivity	IACS	92	%	
Modulus of elasticity	GPa	120	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Hot formability	Good
Soft Soldering, Brazing	Excellent
Welding	Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.2. CuSn0.09

Sn

Alloy Designation	
EN	-
DIN CEN/TS	-
UNS	-

Chemical Com Weight percen	position (Balance) tage	
Cu	≥ 99.90	%

0.055 - 0.135

Characteristics

CuSn0.09 is an in-house developed alloy and is specifically used for radiator fin applications. The alloy has excellent thermal properties. Hot and cold formability is very good (which makes it ideal for engine cooling applications where heat transfer is critical).

The tin addition improves mechanical properties even more than our alloy CuSn0.04 and, as such, contributes to a sturdy final product.

Mechanical Prope	rties			
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness
	Rm	Rp _{0.2}	A _{50mm}	HV *
	MPa	MPa	%	HV
R220	220 275	80	15	53 65
R255	255 315	190	4	80 100
R260	260 330	210	3	85 110
R280	280 360	240	1	95 120
R330	330 410	300		105 130
R355	355 435	330		115 140
R390	390 475	370		125 150

%

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.93	g/cm³		
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K		
Specific heat capacity		0.385	J/(g·K)		
Thermal conductivity		355	W/(m·K)		
Electrical conductivity	MS/m	52	MS/m		
Electrical conductivity	IACS	90	%		
Modulus of elasticity	GPa	125	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Hot formability	Good (decreasing with higher hardnesses)
Soft Soldering, Brazing	Excellent
Welding	Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.3. STOL® 81 - CuSn0.15

Alloy Designation	STOL® 81
EN	
DIN CEN/TS 13388	CW117C
UNS	C14415#

[#] small difference in chemical composition

Characteristics

CuSn0,15 is a low Tin (Sn) special alloy that combines low cost with highest conductivity. The total cost for finish products are often equal to brass due to excellent conditions for stamping scrap.

Typical applications are male connectors and fuse boxes.

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Sn	0.1	%

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals. **Elektrotechnik:** Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding O°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R250	250 320	200	9	60 90	0	0
R300	300 370	250	4	85 110	0	0
R360	360 430	300	3	105 130	0	0
R420	420 490	350	2	120 140	1	1

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.93	g/cm³		
Thermal expansion coefficient	20 300 °C	18	10 ⁻⁶ /K		
Specific heat capacity		0.385	J/(g·K)		
Thermal conductivity		340	W/(m·K)		
Electrical conductivity	MS/m	47	MS/m		
Electrical conductivity	IACS	81	%		
Thermal coefficient of electrical resistance	(0 100 °C)	3.3	10 ⁻³ /K		
Modulus of elasticity	GPa	120	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Fair
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Fair
Gas Shielded Arc Welding	Excellent
Laser Welding	Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.4. STOL® 80 - CuSn0.20

Alloy Designation	STOL® 80
EN	CuSn0,2
DIN CEN/TS 13388	
UNS	C14410

Chemical Composition (Balance) Weight percentage			
Cu	Rest	%	
Sn	0.2	%	
Р	0.01	%	

Characteristics

STOL® 80 is a low Tin (Sn) special alloy that combines low cost with highest conductivity. The total cost for finish products are often equal to brass due to excellent conditions for stamping scrap.

Typical applications are male connectors and fuse boxes.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals.

Electrical: Switches and Relays, Contacts, Connectors, Terminals,
Components for the electrical industry, Stamped parts, Semiconductor
Components.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	300 370	270	10	80 100	0	0
R360	360 430	310	7	110 130	0	0
R420	420 490	370	5	120 150	1	1
R460	≥ 460	410	4	≥ 135	1	1.5

^{*}only for information

Other temper classes on request

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.94	g/cm³		
Thermal expansion coefficient	20 300 °C	17.3	10 ⁻⁶ /K		
Specific heat capacity		0.385	J/(g·K)		
Thermal conductivity		330	W/(m⋅K)		
Electrical conductivity	MS/m	44	MS/m		
Electrical conductivity	IACS	76	%		
Thermal coefficient of electrical resistance	(0 100 °C)	3.3	10 ⁻³ /K		
Modulus of elasticity	GPa	120	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Fair
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Fair
Gas Shielded Arc Welding	Excellent
Laser Welding	Good
* For more details call our technical service	

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

©KME - www.kme.com

4.5. BB20 - CuSn2Fe0,1P

Alloy Designation	
EN	CuSn2Fe0,1P
DIN-EN	-
UNS	C50715
JIS	-

113		_
Chemical C	omposition	
Weigth per	centage	
Cu	Balance	%
Sn	2	%
Zn	< 0,2	%
Ni	< 0,2	%
Fe	0,1	%
Pb	< 0,005	%
Р	< 0,04	%

Characteristics

BB20 is a 2% phosphor bronze with additions of 0.1% Fe which exhibits a good combination of strength, electrical conductivity and metal value. It is used for connectors and current-carrying springs in contacts. Tin bronze with about 2% Sn exhibit a higher electrical conductivity compared to the standard bronzes. Due to coherent precipitates BB20 has improved strength. Although the tin content is reduced, mechanical properties are similar to CuSn4. By means of an additional tempering after the cold forming process the bendability can be further improved.

The alloy is registered with the U.S. EPA as

Antimicrobial and with respect to Pb and Cd meets the OEKO-TEX Standard 100.

Main Applications

Connectors for electrical engineering, electronics and automotive technology, stamped-bent parts, contact springs, leaf springs for relays, slide bearings, Slide bars

Med	nani	cal	Properties

Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ability 0°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bendin	g radius R/T
	MPa	MPa	%	HV	Strip thickne	ss < 0,50 mm
R290	290 390	190	40	70 100	0	0
R390	390 500	290	16	120 160	0	0
R480	480 555	395	10	150 185	0	0,5
R510	510 600	440	6	170 200	0,5	1
R600	600 665	550	3	190 220	1	2

Physical Properties					
Typical values in annealed t	temper at 20°C				
Density		8,9	g/cm³		
Thermal expansion coefficient	20 300°C	17,5	10-6/K		
Thermal conductivity		200	W/(m*K)		
Electrical conductivity	MS/m	20	MS/m		
Electrical conductivity	IACS	34	%		
Thermal coefficient of electrical resistance	(0 100°C)	1,4	10-3/K		
Modulus of elasticity	GPa	120	GPa		

Fabrication Properties	
Cold Forming Properties	Excellent
Machinability	Sufficient
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Excellent

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.6. BB21 - CuSn2Zn2Fe

Alloy Designation	
EN	CuSn2Zn2Fe
DIN-EN	-
UNS	C50725
JIS	-

5.0		
Chemical (Composition	
Weight pe	rcentage	
Cu	Balance	%
Sn	2	%
Zn	2,2	%
Ni	< 0,2	%
Fe	0,1	%
Pb	< 0,005	%
Р	< 0,04	%

Characteristics

BB21 is a 2% phosphor bronze with additions of 2.2% Zn and 0.1% Fe which exhibits a good combination of strength, electrical conductivity and metal value. It is used for connectors and current-carrying springs in contacts. Tin bronze with about 2% Sn exhibit a higher electrical conductivity compared to the standard bronzes. Due to coherent precipitates BB21 has improved strength. Although the tin content is reduced, mechanical properties are similar to CuSn4. By means of an additional tempering after the cold forming process the bendability can be further improved. The alloy is registered with the U.S. EPA as Antimicrobial and with respect to Pb and Cd meets the OEKO-TEX Standard 100.

Main Applications

Connectors for electrical engineering, electronics and automotive technology, stampedbent parts, contact springs, leaf springs for relays.

Mec	hanical	l Prop	erties

Temper	Tensile	Yield Strenght	Elongation	Hardness	Benda	ability
	Strength	Minimum	Minimum		90	O°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bending	g radius R/T
	MPa	MPa	%	HV	Strip thickme	ss < 0,50 mm
R290	290 390	190	40	70 100	0	0
R390	390 500	280	20	120 160	0	0
R480	480 555	430	10	150 185	0	0,5
R510	510 600	470	6	170 200	0,5	1
R600	600 665	575	3	190 220	1	2

Physical Properties			
Typical values in annealed t	emper at 20°C		
Density		8,9	g/cm³
Thermal expansion coefficient	20 300°C	17,5	10-6/K
Thermal conductivity		150	W/(m*K)
Electrical conductivity	MS/m	19	MS/m
Electrical conductivity	IACS	33	%
Modulus of elasticity	GPa	120	GPa

Fabrication Properties		
Cold Forming Properties	Excellent	
Machinability	Sufficient	
Electroplating Properties	Excellent	
Hot Tinning Properties	Excellent	
Soft Soldering, Brazing	Excellent	
Resistance Welding	Good	
Gas Shielded Arc Welding	Good	
Laser Welding	Excellent	

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.7. CuSn4

Alloy Designation	
EN	CuSn4
DIN CEN/TS 13388	CW450K
UNS	C51100

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Sn	4	%
P	0.1	%

Characteristics

CuSn4 provides an excellent combination of strength, excellent formability and hardness. It has a good electrical conductivity and corrosion resistance. Soldering and brazing properties are excellent.

Main Applications

Stamped parts, Connectors, Contact springs, Spring elements, Ultra high strength spring elements, Membranes, Switch elements, Fixed contacts.

Mechanical Prop	erties						
Temper	Tensile Strength	Yield Strength Standard	Yield Strength Bending optimized	Elongation Bending optimized (min.)	Hardness *	optimize	ding d quality 0°
* Only information	Rm	Rp _{0.2}	Rp _{0.2}	A _{50mm}		gw rel. Bending	bw g Radius R/T
	MPa	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R290	290 390	≤ 190 *		40	70 105	0	0
R390	390 490	≥ 320	≥ 250	20	115 155	0	0
R480	480 570	≥ 440	≥ 400	13	150 180	0	0
R540	540 630	≥ 480	≥ 450	12	160 200	0	0
R600	600 760	≥ 560	≥ 530	12	≥ 180	0	0
R660	660 760	≥ 620	≥ 590	7	≥ 180	0	0
R700	700 800	-	≥ 640	3	≥ 190	0	0

Physical Properties Typical values in annealed temper at 20 °C			
Density		8.94	g/cm³
Thermal expansion coefficient	20 300 °C	17.8	10 ⁻⁶ /K
Specific heat capacity		0.377	J/(g·K)
Thermal conductivity		100	W/(m·K)
Electrical conductivity	MS/m	12	MS/m
Electrical conductivity	IACS	21	%
Thermal coefficient of electrical resistance	(0 100 °C)	0.1	10 ⁻³ /K
Modulus of elasticity	GPa	110	GPa

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Good

^{*}For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.8. CuSn5

Alloy Designation	
EN	CuSn5
DIN CEN/TS 13388	CW451K
UNS	C51000

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Sn	5	%
P	0.1	%

Characteristics

CuSn5 provides an excellent combination of strength, excellent formability and hardness. It has a good electrical conductivity and corrosion resistance. Soldering and brazing properties are excellent.

Main Applications

Stamped parts, Connectors, Contact springs, Spring elements, Ultra high strength spring elements, Membranes, Switch elements, Fixed contacts.

Mechanical Proper	ties						
Temper	Tensile Strength	Yield Strength Standard	Yield Strength Bending optimized	Elongation Bending optimized (min.)	Hardness *	optimize 9	i ding ed quality 0°
* only information	Rm	Rp _{0.2}	Rp _{0.2}	A _{50mm}		g w rel. Bendin	bw g Radius R/T
	MPa	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R310	310 390	≤ 250 *			70105	0	0
R400	400 500	≥ 340		17	120 160	0	0
R490	490 580	≥ 450	≥ 440	19	160 190	0	0
R550	550 640	≥ 500	≥ 480	13	180 210	0	0.5
R630	630 720	≥ 570	≥ 560	7	200 230	0	1
R690	≥ 690	≥ 630	≥ 600	4	≥ 220	2	3

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.94	g/cm³	
Thermal expansion coefficient	20 300 °C	17.8	10 ⁻⁶ /K	
Specific heat capacity		0.38	J/(g·K)	
Thermal conductivity		90	W/(m·K)	
Electrical conductivity	MS/m	10	MS/m	
Electrical conductivity	IACS	17	%	
Thermal coefficient of electrical resistance	(0 100 °C)	0.1	10 ⁻³ /K	
Modulus of elasticity	GPa	120	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Good

^{*}For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.9. CuSn6

Alloy Designation	
EN	CuSn6
DIN CEN/TS 13388	CW452K
UNS	C51900

Chemical Composition(Weight percentage	Balance)	
Cu	Rest	%
Sn	6	%
P	0.1	%

Characteristics

CuSn6 provides an excellent combination of strength, cold formability and hardness. It is wear resistant, has good corrosion resistance and soldering properties.

Due to its high strength and good spring properties combined with good machining properties it is used for all kind of springs, Connectors, Bourdon tubes or flexible metal tubes.

Main Applications

Stamped parts, Connectors, Contact springs, Spring elements, Ultra high strength spring elements, Membranes, Switch elements, Fixed contacts.

Mechanical Properties							
Temper	Tensile Strength	Yield Strength Standard	Yield Strength Bending optimized	Elongation Bending optimized min.	Hardness *		l ability 90° bw
* Only information ** Thickness 0.15 - 0.60 mm	Rm	Rp _{0.2}	Rp _{0.2}	A _{50mm}		rel. Bendir	ng Radius R/T
	MPa	MPa	MPa	%	HV	Strip Thickn	ess ≤ 0.50mm
R350	350 420	≤ 300 *		45	80 120	0	0
R420	420 520	≥ 350	≥ 340	29	120 170	0	0
R500	500 590	≥ 450	≥ 410	22	160 190	0	0
R560	560 650	≥ 520	≥ 490	15	180 210	0	0
R640	640 730	≥ 590	≥ 570	12	200 230	0	0.5
R720	≥ 720	≥ 650	≥ 620	4	≥ 210	1	-
R850 **	≥ 850		≥ 800	1.5	≥ 240	1	-

Physical Properties Typical values in annealed temper at 20 °C						
Density		8.95	g/cm³			
Thermal expansion coefficient	20 300 °C	18.5	10 ⁻⁶ /K			
Specific heat capacity		0.377	J/(g·K)			
Thermal conductivity		75	W/(m·K)			
Electrical conductivity	MS/m	9	MS/m			
Electrical conductivity	IACS	16	%			
Thermal coefficient of electrical resistance	(0 100 °C)	0.7	10 ⁻³ /K			
Modulus of elasticity	GPa	115	GPa			

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent / Good
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

4.10. CuSn8

Alloy Designation	
EN	CuSn8
DIN CEN/TS 13388	CW453K
UNS	C52100

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Sn	8	%
P	0.1	%

Characteristics

CuSn8 strips provide a better corrosion resistance compared to bronze with lower tin-content, combined with higher strength, very fine grain and good slip properties. It is wear resistant, has excellent spring properties, especially in application of miniaturisated connector systems, good cold forming and soldering properties.

Main Applications

Stamped parts, Connectors, Contact springs, Spring elements, Ultra high strength spring elements, Membranes, Switch elements, Fixed contacts.

Mechanische Eigenschaften							
* Only information ** Thickness 0.15 - 0.60 mm	Tensile Strength Rm	Yield Strength Standard Rp _{0.2}	Yield Strength Bending optimized Rp _{0.2}	Elongation Bending optimized min. A _{50mm}	Hardness *	gw	lability 00° bw ng Radius R/T
	MPa	MPa	MPa	%	HV	Banddick	e ≤ 0.50mm
R370	370 450	≤ 300 *			80120	0	0
R450	450 550	≥ 370	≥ 350	35	120 175	0	0
R540	540 630	≥ 460	≥ 440	27	170 200	0	0
R600	600 690	≥ 520	≥ 480	20	180 210	0	0
R660	660 750	≥ 600	≥ 580	14	210 240	0	2
R740	740 810	≥ 680	≥ 660	8	210 260	2	3
R800 **	800 930	≥ 720	≥ 700	-	230 290	-	-
R850 **	≥ 850	-	≥ 800	-	≥ 240	-	-

Physical Properties Typical values in annealed temper at 20 °C						
Density		8.96	g/cm³			
Thermal expansion coefficient	20 300 °C	18.0	10 ⁻⁶ /K			
Specific heat capacity		0.377	J/(g·K)			
Thermal conductivity		67	W/(m·K)			
Electrical conductivity	MS/m	6.5	MS/m			
Electrical conductivity	IACS	11	%			
Thermal coefficient of electrical resistance	(0 100 °C)	0.065	10 ⁻³ /K			
Modulus of elasticity	GPa	109	GPa			

Excellent
Less suitable
Excellent
Excellent
Excellent
Good
Good
Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

©KME - www.kme.com

4.11. CuSn10

Alloy Designation	
EN	CuSn10
DIN CEN/TS	not standardized
UNS	C52400
	,

UNS	C52400	
Chemical Composition (balanc Weight percentage	e)	
Cu	Rest	%
Sn	10	%
Р	0.1	%

Characteristics

CuSn10 strips provide a better corrosion resistance compared to bronze with lower tin-content, combined with higher strength and good slip properties. It is wear resistant, has excellent spring properties, good cold forming and soldering properties.

Main Applications

Stamped parts, Connectors, Contact springs, Spring elements, Ultra high strength spring elements, Membranes, Switch elements, Fixed contacts.

Mechanical Properties								
Temper	Temper	Tensile strength	Yield strength Rp _{0.2}	Yield strength Bending optimized Rp _{0.2}	Elongation min. A _{50mm}	Hardness*	gw	nding 90° bw ng radius R/T
		MPa	MPa	MPa	%	HV	Thicknes	s ≤ 0.50mm
R400	O60	400 500	≤ 200	-	≥ 55	120150	0	0
R520	H02	525 625	≥ 460	400	> 20	160210	0	0
R650	H04	650 750	≥ 580	≥ 550	> 11	200 240	0	0
R750	H06	750 850	≥ 650	≥ 620	> 9	230 270	0	1,5
R850	H08	850 950	≥ 780	≥ 750	>5	250 290	1	2,5
R950	H10	950 1050	≥ 900	-	>1	270310	-	-
R1000**	H12**	> 1000	≥ 950	-	-	> 290	-	-

^{*} Only for information ** Thickness 0.20 - 0.60 mm

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.8	g/cm³	
Thermal expansion coefficient	20 300 °C	18.4	10 ⁻⁶ /K	
Specific heat capacity		0.377	J/(g·K)	
Thermal conductivity		50	W/(m·K)	
Electrical conductivity	MS/m	6	MS/m	
Electrical conductivity	IACS	10	%	
Thermal coefficient of electrical resistance	(0 100 °C)	0.065	10 ⁻³ /K	
Modulus of elasticity	GPa	110	GPa	

Fabrication Poperties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Good
Laser Welding	Good

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.1. CuNi10Fe1Mn

Alloy Designation	
EN	CuNi10Fe1Mn
DIN CEN/TS 13388	CW352H
UNS	C70620

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Ni	9 11	%
Fe	1 2	%
Mn	0.5 1	%

Characteristics

For many decades, copper-nickel alloy CuNi10Fe1Mn has extensively been used as a piping material for seawater systems in shipbuilding, offshore, and desalination industries. Attractive characteristics of this alloy combine excellent resistance to uniform corrosion, remarkable resistance to localised corrosion in chlorinated seawater, and higher erosion resistance than other copper alloys and steel. Furthermore, CuNi10Fe1Mn is resistant to biofouling providing various economic benefit.

Main Applications

Cladding for corrosion protection of steel structures, Sheathing on offshore structures, Piping systems, pipes, fittings, flanges, desalination plant, offshore wind structures, shipbuilding.

Mechanical Proper	ties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
	MPa	МРа	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	≥ 300	100 *	20	≥ 70	0	0
R320	≥ 320	180 *	12	≥ 100	0	0
R420	420 510	370 *	3	≥ 120	0	0.5
R520	520 610	480 *	2	≥ 150	1	2
R620	≥ 620	590 *	-	≥ 170	-	-

^{*} only for information

Physical Properties				Fabrication P
Typical values in annealed	temper at 20 °C			Cold Forming
Density		8.89	g/cm³	Machinability
Thermal expansion				Electroplating
coefficient	20 300 °C	19.0	10 ⁻⁶ /K	Hot Tinning P
Specific heat capacity		0.38	J/(g·K)	Soft Soldering
				Resistance W
Thermal conductivity		50.2	W/(m·K)	Gas Shielded
Electrical conductivity	MS/m	5	MS/m	Laser Welding
Electrical conductivity	IACS	9	%	* For more deta
Thermal coefficient of electrical resistance	(0 100 °C)	7	10 ⁻³ /K	
Modulus of elasticity	GPa	130	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Good
Electroplating Properties	Good
Hot Tinning Properties	-
Soft Soldering, Brazing	Excellent
Resistance Welding	Excellent
Gas Shielded Arc Welding	Good
Laser Welding	Excellent
* For more details call our technical service	

ails call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.2. NB12 - CuNi12Zn24

Alloy Designation	
EN	CuNi12Zn24
DIN-EN	CW403J
UNS	C75700
JIS	-

Chemical Composition Weight percentage				
Cu	Balance	%		
Ni	12	%		
Zn	24	%		
Fe	< 0,2	%		
Mn	< 0,5	%		
Pb	< 0,01	%		

Characteristics

NB12 is a nickel silver alloy containing 12 % nickel and 24 % zinc. The alloy has good cold-forming properties and is particularly suitable for deep-drawing. Like all copper alloys the copper-nickel-zinc alloys are not susceptible to embrittlement at lower temperature. The corrosion resistance of nickel silver is considerably better than that of binary copper-zinc alloys. NB12 is insensitive to stress corrosion cracking. NB12 is used for contacts, deep-drawing parts and for optical goods. The alloy is registered with the U.S. EPA as Antimicrobial.

Main Applications

Coins, Caps for quartz crystals, Electromagnetic shieldings, Deep drawing parts, Tableware, Security keys, Cutlery, Contact springs, Connector, Leaf springs for relays, Electric contacts

Mechanical Properties						
Temper	Tensile	Yield Strength	Elongation	Hardness		ability
	Strength	Minimum	Minimum		90	O°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bending	g radius R/T
	MPa	MPa	%	HV	Strip thickne	ss < 0,50 mm
R350	350 450	200	35	80 110	0	0
R430	430 510	230	8	110 150	0	0
R490	490 580	400	7	150 180	0	0
R550	550 640	480	3	170 200	0	1
R620	620 710	580	-	190 220	-	-

Physical Properties						
Typical values in annealed t	Typical values in annealed temper at 20 °C					
Density		8,7	g/cm³			
Thermal expansion coefficient	20 300°C	17	10-6/K			
Thermal conductivity		33	W/(m*K)			
Electrical conductivity	MS/m	4	MS/m			
Electrical conductivity	IACS	7	%			
Thermal coefficient of electrical resistance	(0 100°C)	0,4	10-3/K			
Modulus of elasticity	GPa	125	GPa			

Fabrication Properties	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Satisfactory
Electroplating Properties	Excelent
Hot Tinning Properties	Satisfactory
Soft Soldering, Brazing	Satisfactory
Resistance Welding	Excelent
Gas Shielded Arc Welding	Good
Laser Welding	Good

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.3. NB15 - CuNi18Zn10

Alloy Designation	
EN	CuNi18Zn10
DIN-EN	-
UNS	C73500
JIS	C7351

Chemical Composition			
Weight per	rcentage		
Cu	Balance	%	
Ni	18	%	
Zn	10	%	
Fe	< 0,2	%	
Mn	< 0,5	%	
Pb	< 0,01	%	

Characteristics

NB15 is a nickel silver alloy containing 18 % nickel and 10 % zinc. The alloy has particularly good cold-forming properties and exhibits extraordinarily good deep-drawing properties. Like all copper alloys the copper-nickel-zinc alloys are not susceptible to embrittlement at lower temperature. The corrosion resistance of nickel silver is considerably better than that of binary copper-zinc alloys.

NB15 is insensitive to stress corrosion cracking. NB15 is used for deep-drawing parts and for optical goods.

The alloy is registered with the U.S. EPA as antimicrobial.

Main Applications

Coins, Caps for quartz crystals, Electromagnetic shieldings, Deep drawing parts, Tableware, Security keys, Cutlery, Contact springs, Connector, Leaf springs for relays, Electric contacts.

Mechanical Porperties						
Temper	Tensile	Yield Strength	Elongation	Hardness	Bend	ability
	Strength	Minimum	Minimum		9	0°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bendin	g radius R/T
	MPa	MPa	%	HV	Strip thickne	ess < 0,50 mm
R330	330 430	200	30	80 100	0	0
R400	400 480	230	12	105 150	0	0
R460	460 530	380	5	140 180	0	0
R520	520 610	450	3	160 190	0	0
R600	600 690	530	=	180 210	0	1,5

Physsical Properties			
Typical valuesin annealed to	emper at 20°C		
Density		8,7	g/cm³
Thermal expansion coefficient	20 300°C	16	10-6/K
Thermal conductivity		36	W/(m*K)
Electrical conductivity	MS/m	3	MS/m
Electrical conductivity	IACS	5	%
Modulus of elasticity	GPa	125	GPa

Fabrication Properties	
Cold Forming Properties	Excellent
Machinability	Satisfactory
Electroplating Properties	Excellent
Hot Tinning Properties	Satisfactory
Soft Soldering, Brazing	Satisfactory
Resistance Welding	Excellent
Gas Shielded Arc Welding	Good
Laser Welding	Good

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.4. NB17 - CuNi18Zn27

Alloy Designation	
EN	CuNi18Zn27
DIN-EN	CW410J
UNS	C77000
JIS	C7701

Chemical Composition			
Weight per	Weight percentage		
Cu	Balance	%	
Ni	18	%	
Zn	27	%	
Fe	< 0,2	%	
Mn	< 0,5	%	
Pb	< 0,01	%	

Characteristics

NB17 is a nickel silver alloy containing 18 % nickel and 27 % zinc. The alloy has good cold-forming properties, is tarnish resistant and has particularly good spring properties. Like all copper alloys the copper-nickel-zinc alloys are not susceptible to embrittlement at lower temperature. The corrosion resistance of nickel silver is considerably better than that of binary copper-zinc alloys. NB17 is insensitive to stress corrosion cracking.

NB17 is used for contact springs in relays, EMI shieldings and jewelry.

Main Applications

Coins, Caps for quartz crystals, Electromagnetic shieldings, Deep drawing parts, Tableware, Security keys, Cutlery, Contact springs, Connector, Leaf springs for relays, Electric contacts.

Mechanical Properties						
Temper	Tensile	Yield Strength	Elongation	Hardness		ability
	Strength	Minimum	Minimum		9	0°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bendin	g radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess < 0,50 mm
R390	390 470	280	33	90 120	0	0
R470	470 540	280	11	135 180	0	0
R540	540 630	450	5	170 200	0	0
R600	600 700	550	2	190 220	0	0,5
R700	700 800	650	1	220 250	-	-
R760	760 850	700	-	230 260	-	-

Physical Properties					
Typical values in annealed t	temper at 20°C				
Density		8,8	g/cm³		
Thermal expansion coefficient	20 300°C	17	10-6/K		
Thermal conductivity		27	W/(m*K)		
Electrical conductivity	MS/m	3	MS/m		
Electrical conductivity	IACS	5	%		
Thermal coefficient of electrical resistance	(0 100°C)	0,3	10-3/K		
Modulus of elasticity	GPa	135	GPa		

Fabrication Properties	
Cold Forming Properties	Excellent
Mechinability	Satisfactory
Electroplating Properties	Excellent
Hot Tinning Properties	Satisfactory
Soft Soldering Properties	Satisfactory
Resistance Welding	Excellent
Gas Shielded Arc Welding	Good
Laser Welding	Good

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.5. NB18 - CuNi18Zn20

Alloy Designation	
EN	CuNi18Zn20
DIN-EN	CW409J
UNS	C76400
JIS	C7521

Chemical C	Chemical Composition				
Weight per	Weight percentage				
Cu	Balance	%			
Ni	18	%			
Zn	20	%			
Fe	< 0,2	%			
Mn	< 0,5	%			
Pb	< 0,01	%			

Characteristics

NB18 is a nickel silver alloy containing 18 % nickel and 20 % zinc. The alloy has good cold-forming properties, is tarnish resistant and has very good spring properties. Like all copper alloys the copper-nickel-zinc alloys are not susceptible to embrittlement at lower temperature. The corrosion resistance of nickel silver is considerably better than that of binary copper-zinc alloys. NB18 is insensitive to stress corrosion cracking. NB18 is used for contact springs in relays, EMI shieldings and jewelry.

Main Application

Coins, Caps for quartz crystals, Electromagnetic shieldings, Deep drawing parts, Tableware, Security keys, Cutlery, Contact springs, Connector, Leaf springs for relays, Electric contacts.

Mechanical Properties						
Temper	Tensile	Yield Strength	Elongation	Hardness	Bend	ability
	Strength	Minimum	Minimum		9	0°
	Rm	Rp0,2	A50 mm	HV*	gw	bw
					rel. Bendin	g radius R/T
	MPa	MPa	%	HV	Thickness	< 0,50 mm
R370	370 460	250	30	85 125	0	0
R450	450 520	250	9	115 160	0	0
R500	500 590	410	3	160 190	0	0
R580	580 680	510	2	180 210	0	0,5
R640	640 730	600	-	200 230	-	-

Physical Properties			
Typical values in annealed t	emper at 20°C		
Density		8,7	g/cm³
Thermal expansion coefficient	20 300°C	17	10-6/K
Thermal conductivity		27	W/(m*K)
Electrical conductivity	MS/m	3	MS/m
Electrical conductivity	IACS	5	%
Thermal coefficient of electrical resistance	(0 100°C)	0,3	10-3/K
Modulus of elasticity	GPa	135	GPa

Fabrication Properties	
Cold Forming Properties	Excellent
Mechinability	Satisfactory
Electroplating Properties	Excellent
Hot Tinning Properties	Satisfactory
Soft Soldering, Brazing	Satisfactory
Resistance Welding	Excellent
Gas Shielded Arc Welding	Good
Laser Welding	Good

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

5.6. NX13 - CuNi12Zn25Pb1

Legierungsbezeichn	ung
EN	CuNi12Zn25Pb1
DIN-EN	CW404J
UNS	C79200
JIS	-
Kurzzeichen Sundwig	CuNi13Zn24Pb1

Chemische Z	Chemische Zusammensetzung (Richtwerte)			
Gewichtsanteil in Prozent				
Cu	Rest	%		
Zn	24	%		
Ni	13	%		
Pb	1	%		

Eigenschaften

NX13 – ein spezielles Neusilber – wird hauptsächlich für Sicherheitsschlüssel eingesetzt. Es wird wegen folgender Eigenschaften für die Schlüsselproduktion bevorzugt:

- · Ausgezeichnet stanzbar und gut prägbar
- · Besonders gut spanabhebend bearbeitbar
- · Optimale Festigkeitseigenschaften
- Sehr gute Korrosionsbeständigkeit

Je nach Kundenwunsch oder Anwendungsfall fertigen wir NX13 in den Lieferzuständen HB160 und HB170; weitere Härtestufen können auf Anfrage geliefert werden.

Hauptanwendungen Sicherheitsschlüssel

Mechanische Eigenschaften							
Zustand	Zugfestigkeit	Streckgrenze Minimum	Dehnung Minimum	•			
	Rm	Rp0,2	A50 mm	НВ	HV		
	MPa	MPa	%	НВ	HV		
R350	350 450	300	25	85 115	90 125		
R450	450 520	310	12	115 150	125 160		
R500	500 600	450	5	145 170	155 185		
R600	600 710	580	2	170 190	185 210		
R670	670	650	-	180	200		

Bei Schlüsselrohlingen bezieht sich die Härteangabe auf das Band vor dem Stanzen.

Bevorzugt werden die Lieferzustände HB 160 oder HB 170.

HB160 - 180 und HB170 - 190 sind eingeschränkte Härtestufen für Schlüsselrohlinge.

Lieferbare Abmessungen					
	Bänder	Schlüsselrohlinge			
Dicke	1,5 - 2,6 mm	Nach Kundenzeichnung gestanzt mit eigenen oder			
	2,6 - 3,5 mm	vom Kunden beigestellten Werkzeugen.			
Breite	min. 30 mm	Wir liefern Rohlinge in Zusammenarbeit mit einem			
	min.58 mm	Unterlieferanten auch in bearbeiteter Form.			

Aufgrund kontinuierlicher Verbesserungen innerhalb unseres Produktionsprozesses können die in unserer Broschüre angegebenen Details nicht garantiert werden. Wir behalten uns das Recht vor, unsere Produkte ohne vorherige Ankündigung zu aktualisieren oder zu ändern. Wir empfehlen Ihnen, eine Bestätigung unserer Produktdetails / Spezifikationen einzuholen, bevor Sie sich auf bestimmte Legierungen festlegen.

6.1. STOL® 76M - CuNiSi

Alloy Designation	STOL® 76M
EN	CuNiSi
DIN CEN/TS 13388	
UNS	C19005

Chemical Compositio Weight percentage	n (Balance)	
Cu	Rest	%
Ni	1.5	%
Si	0.3	%
Sn	0.1	%
Zn	0.4	%

Characteristics

STOL® 76M is an optimized CuNiSi alloy that can be hardened by cold forming and by precipitation of NiSi-phases during a heat treatment. It has excellent bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to 150 °C are excellent. In combination with a tin coating even at temperatures around 150 °C (3.000h) the tin coating does not peel off. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals, Press fits

Electrical: Switches and Relays, Contacts, Connectors, Terminals, Press fits, Components for the electrical industry, Stamped parts, Semiconductor Components.

Mechanical Properties *values for stress relieved qualities							
Temper	Temper	Characte Characte		Elongation min.	Hardness	Bendability 90°	
	H = Cold worked TM = Mill hardened	Rm MPa	Rp_{0.2} Mpa	A _{50mm} %	HV only for information		bw g Radius R/T ess ≤ 0.50mm
R530	TM04 (HM)	530 630	430	14	150 190	0	0
R580	TM06 (XHM)	580 650	540	8	170 200	1	1
R580S	TM06 (XHM) bending optimized	580 650	520	9	170 200	0.5	0.5
R620	TM08 (SHM)	620 700	560	7	180 210	1	1.5

Other temper classes on request

Physical Properties				Fabrication Properties *	
Typical values in annealed	temper at 20 °C			Cold Forming Properties	Excellent
Density		8.92	g/cm³	Machinability (Rating 20)	Less suitable
Thermal expansion	20 200 °C	16.0	10-6/V	Electroplating Properties	Excellent
coefficient	20 300 °C	16.8	10 ⁻⁶ /K	Hot Tinning Properties	Excellent
Specific heat capacity		0.377	J/(g·K)	Soft Soldering, Brazing	Excellent
Thormal conductivity		250	W/(m·K)	Resistance Welding	Less suitable
Thermal conductivity		230	vv/(III·K)	Gas Shielded Arc Welding	Excellent
Electrical conductivity	MS/m	33	MS/m	Laser Welding	Fair
Electrical conductivity	IACS	57	%	* For more details call our technical service	
Thermal coefficient of electrical resistance	(0 100 °C)	2	10 ⁻³ /K		
Modulus of elasticity	GPa	135	GPa		

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

6.2. STOL® 76 - CuNiSi

Alloy Designation	STOL® 76
EN	CuNiSi
DIN CEN/TS 13388	
UNS	C19010

Chemical Composition Weight percentage	n (Balance)	
Cu	Rest	%
Ni	1.5	%
Si	0.25	%
P	0.03	%

Characteristics

STOL® 76 is a CuNiSi alloy that can be hardened by cold forming and by precipitation of NiSi-phases during a heat treatment. It has excellent bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to $150\,^{\circ}\text{C}$ are excellent. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals. **Electrical:** Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components, Junction Boxes.

Mechanical Properties									
Temper	Temper	Tensile Strength	Yield Strength	Elongation Minimum	Hardness	Ben 90	ding O°		
		Rm	Minimum Rp _{0.2}	A _{50mm}	HV **	gw rel. Bending	bw g Radius R/T		
		MPa	MPa	%	HV	Strip Thickne	ss ≤ 0.50mm		
R520	TM06 (XHM)	520 590	440	8	155 180	0.5	0.5		
R580	TM08 (SHM)	580 650	520	9	160 210	1	1		

^{**} only for information

Other temper class on request

Physical Properties				Fabrication Properties *		
Typical values in annealed	I temper at 20 °C			Cold Forming Properties	Excellent	
Density		8.93	g/cm³	Machinability (Rating 20)	Less suitable	
Thermal expansion	20 200 10	46.0	405/14	Electroplating Properties	Excellent	
coefficient	20 300 °C	16.8	10 ⁻⁶ /K	Hot Tinning Properties	Excellent	
Specific heat capacity		0.377	J/(g·K)	Soft Soldering, Brazing	Excellent	
- 1 1 1		260	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Resistance Welding	Less suitable	
Thermal conductivity		260	W/(m·K)	Gas Shielded Arc Welding	Excellent	
Electrical conductivity	MS/m	35	MS/m	Laser Welding	Fair	
Electrical conductivity	IACS	60	%	* For more details call our technical service		
Thermal coefficient of electrical resistance	(0 100 °C)	2	10 ⁻³ /K			
Modulus of elasticity	GPa	135	GPa			

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

6.3. CuNi3Si

Alloy Designation		
EN	CuNi3Si	
DIN CEN/TS 13388		
UNS	C70250	

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Ni	3	%
Si	0.65	%
Mg	0.15	%

Characteristics

CuNi3Si is an optimized CuNiSi alloy that can be hardened by cold forming and by precipitation of NiSi-phases during a heat treatment. It has excellent bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to 150 °C are excellent. In combination with a tin coating even at temperatures around 150 °C (3.000h) the tin coating does not peel off. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive Switches and Relays, Contacts, Connectors, Terminals. **Electrical** Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components.

Mechanica	al Properties						
Temper		Tensile Strength Rm	Yield Strength Minimum Rp _{0.2}	Elongation Minimum A _{50mm}	Hardness HV (only for information)	Bending 90° gw bw rel. Bending Radius R/T	
		MPa	MPa	%	HV		ess ≤ 0.50mm
R620	TM00	620 760	500	10	180 240	0	0
R650	TM02	650 825	585	7	190 250	1	1
R690	TM03	690 860	655	5	210 250	1.5	1.5
R760	TM05	760 840	720	3	220 260	3	3
R840 *	TM08	840 920	810	1	240 275	2.5 **	3.5 **
R900 *	TM10	900 1000	880	1	260 300	4 **	8 **

^{*} only for thicknesses between 0.10 and 0.50 mm (other thicknesses on request) ** Bending radii with maximum bending width 5 x t

Physical Properties				Fabrication Properties *	
Typical values in annealed	temper at 20 °C			Cold Forming Properties	Good
Density		8.87	g/cm³	Machinability (Rating 20)	Less suitable
Thermal expansion	20 200 %6	17.0	10-6/1/	Electroplating Properties	Good
coefficient	20 300 °C	17.6	10 ⁻⁶ /K	Hot Tinning Properties	Good
Specific heat capacity		0.399	J/(g·K)	Soft Soldering, Brazing	Good
The read conductivity		100	\\//m \/\	Resistance Welding	Fair
Thermal conductivity		190	W/(m·K)	Gas Shielded Arc Welding	Good
Electrical conductivity	MS/m	23	MS/m	Laser Welding	Less suitable
Electrical conductivity	IACS	40	%	* For more details call our technical service	
Thermal coefficient of electrical resistance	(0 100 °C)	3	10 ⁻³ /K		
Modulus of elasticity	GPa	130	GPa		

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

6.4. STOL® 94 - CuNiSi

Alloy Designation	STOL® 94
EN	CuNiSi
DIN CEN/TS 13388	
UNS	C70315
·	C70315

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Ni	2.5	%
Si	0.6	%
Zn	≤ 2	%
Sn	≤1	%

Characteristics

STOL® 94 is a CuNiSi alloy which is available in cold worked and precipitation hardened tempers. It combines maximum strength with excellent bendability, good electrical conductivity, excellent resistance against relaxation.

Partial substitute for copper-beryllium alloys.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to 150 °C are excellent. In combination with a tin coating even at temperatures around 150 °C (3.000h) the tin coating does not peel off. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive: Switches and Relays, Terminals, Contacts, Connectors, miniaturized connectors.

Electrical: Switches and Relays, Terminals, Contacts, Connectors.

Mechanica	Mechanical Properties * values for stress relieved qualities								
Temper	Temper	Tensile Strength	Yield Strength	Elongation min.	Hardness		ability 0°		
		_	min.			gw	bw		
	H = Cold worked TM = Mill hardened	Rm MPa	Rp_{0.2} Mpa	A _{50mm} %	HV only for information		g Radius R/T ess ≤ 0.50mm		
R580	H06 (Extra Hard)	580 650	520	4 6*	170 200	1	2.5		
R620	TM01 (¹ / ₂ Hard)	620 720	540	16	180 240	0	0		
R660	TM02 (¹/ ₂ Hard)	660 750	590	10	200 . 250	1	1		
R750	TM04 (Hard)	750 830	680	8	210 260	2	2		

Other temper classes on request

Physical Properties				Fabrication Properties *	
Typical values in annealed temper at 20 °C			Cold Forming Properties	Good	
Density		8.86	g/cm³	Machinability (Rating 20)	Less suitable
Thermal expansion				Electroplating Properties	Excellent
coefficient	20 300 °C 17 10 ⁻⁶ /K		10 ⁻⁶ /K	Hot Tinning Properties	Excellent
Specific heat capacity		0.399	J/(g·K)	Soft Soldering, Brazing	Excellent
			,, ,	Resistance Welding	Fair
Thermal conductivity		185	W/(m·K)	Gas Shielded Arc Welding	Good
Electrical conductivity	MS/m	25	MS/m	Laser Welding	Less suitable
Electrical conductivity	IACS	43	%	* For more details call our technical service	е
Thermal coefficient of electrical resistance	(0 100 °C)	3	10 ⁻³ /K		
Modulus of elasticity	GPa	130	GPa		

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

7.1. STOL® 75 - CuCrSiTi

Alloy Designation	STOL® 75
EN	CuCrSiTi
DIN CEN/TS 13388	
UNS	C18070

Chemical Composition (Balance) Weight percentage			
Cu	Rest	%	
Cr	0.3	%	
Si	0.02	%	
Ti	0.1	%	

Characteristics

STOL® 75 is a CuCrSiTi alloy that can be hardened by cold forming and by precipitation during a heat treatment. This alloy provides a good combination of high electrical conductivity, good strength, good bendability, excellent hot and cold forming properties and a good corrosion resistance.

Due to the Precipitations the relaxation properties, even at temperatures up to 200 $^{\circ}\text{C}$ are excellent.

Main Applications

E-Mobility, Hybrid Applications, Elecrical contacts, Automotive Connectors, Photovoltaic-Systems and Electronic Components.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin _i	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R400	400 480	300	8	120 150	0	0
R460	460 560	400	9	140 170	0.5	0.5
R530	530 610	460	10	150 190	1	1
R550	550 630	520	10	150 190	1	1

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.93	g/cm³	
Thermal expansion coefficient	20 300 °C	18.0	10 ⁻⁶ /K	
Specific heat capacity		0.38	J/(g·K)	
Thermal conductivity		310	W/(m·K)	
Electrical conductivity	MS/m	45	MS/m	
Electrical conductivity	IACS	78	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3	10 ⁻³ /K	
Modulus of elasticity	GPa	135	GPa	

Fabrication Properties *	
Cold Forming Properties	Good
Machinability (Rating 20)	Less suitable
Electroplating Properties	Good
Hot Tinning Properties	Good
Soft Soldering, Brazing	Good
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
* For more details call our technical service	

ENGINEERING COPPER SOLUTIONS

7.2. STOL® 88 - CuCrAgFeTiSi

Alloy Designation	STOL® 88
EN	
ASTM	B936
UNS	C18080

Chemical Compositio Weight percentage	n (Balance)	
Cu	Rest	%
Cr	0.20 - 0.7	%
Si	0.01 - 0.10	%
Ti	0.01 - 0.15	%
Ag	0.01 - 0.30	%
Fe	0.02 - 0.20	%

Characteristics

C18080 is a CuCrAgFeTiSi alloy that can be hardened by cold forming and by precipitation during heat treatment. It has good bendability, excellent hot and cold formability, high strength and good corrosion resistance. Due to the precipitates, the relaxation properties are excellent, even at temperatures up to 200 °C. The electrical and thermal conductivity is excellent.

Main Applications

E-Mobility, Hybrid Applications, Electrical contacts, Automotive Connectors, Photovoltaic-Systems and Electronic Components.

Mechanica	l Properties						
Temper Class	ASTM	Tensile Strength	Yield Strength	Elongation Minimum	Hardness		nding 90°
		Rm	Rp _{0.2}	A _{50mm}	HV	gw rac	bw dius R/T
		MPa	MPa	%	HV	thicknes	ss ≤ 0.50mm
R420		420 500	340	12	130 150	0	0
R480	TM04	480560	450	10	140 170	0	0
R540	TM08	540 625	520	9	150 180	0.5	0.5
R520	TR08	520 625	495	8	160 190	1	2

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.92	g/cm³	
Thermal expansion coefficient	20 300 °C	17.6	10 ⁻⁶ /K	
Specific heat capacity		0.38	J/(g·K)	
Thermal conductivity		320	W/(m·K)	
Electrical conductivity	MS/m	46	MS/m	
Electrical conductivity	IACS	79	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3	10 ⁻³ /K	
Modulus of elasticity	GPa	140	GPa	

Good
Less suitable
Good
Good
Good
Less suitable
Excellent
Fair

^{*} For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

7.3. STOL® 95 - CuCrZr

Alloy Designation	STOL® 95
EN	CuCr1Zr
DIN CEN/TS 13388	
UNS	C18160

С	ha	rac	te	ris	tic	s

STOL® 95 is a CuCrZr alloy that can be hardened by cold forming and by precipitation of CuCrZr - phases during a heat treatment. It has good bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the CrZr-precipitations the relaxation properties, even at temperatures up to 250 °C are excellent. The electrical and thermal conductivity is excellent. Welding, soldering and brazing properties are good too.

Chemical Compositior Weight percentage	n (Balance)	
Cu (incl. Ag)	Rest	%
Cr	0.8	%
Zr	0.2	%

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals, Press fits, Hybrid Cars.

Electrical: Switches and Relays, Contacts, Connectors, Terminals, Press fits, Components for the electrical industry, Stamped parts, Semiconductor Components, Junction Boxes, Photovoltaic Systems.

Mechanical Properties							
Temper	Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		nding 90°
	TM = Mill hardened	Rm	Rp _{0.2}	A _{50mm}	HV (only for information)	g w rel. bendir	bw ng radius R/T
		MPa	MPa	%	HV	Strip thickn	ess ≤ 0.50mm
R480	TM04	480 560	450	8	150 190	1.5	1.5
R540	TM08	540 630	500	4	160 200	2	2
R540S	TR08	540 620	480	8	160 190	1.5	1.5
R600 *	-	≥ 600	550	2	≥ 160	2 **	2 **

^{*} only for thicknesses between 0.10 and 0.50 mm (other thicknesses on request) ** Bending radius with maximum bending width 5 x t

Physical Properties				Fabrication Properties *	
Typical values in annealed	d temper at 20 °C			Cold Forming Properties	Good
Density		8.92	g/cm³	Machinability (Rating 20)	Less suitable
Thermal expansion				Electroplating Properties	Excellent
coefficient	20 300 °C	18.0	10 ⁻⁶ /K	Hot Tinning Properties	Excellent
Specific heat capacity		0.381	J/(g·K)	Soft Soldering, Brazing	Excellent
				Resistance Welding	Less suitable
Thermal conductivity		330	W/(m⋅K)	Gas Shielded Arc Welding	Excellent
Electrical conductivity	MS/m	50	MS/m	Laser Welding	Fair
Electrical conductivity	IACS	86	%	* For more details call our technical service	
Thermal coefficient of electrical resistance	(0 100 °C)	3	10 ⁻³ /K		
Modulus of elasticity	GPa	135	GPa		

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

8.1. CuTeSn

Alloy Designation	1	
EN		
DIN CEN/TS		
UNS C14530		
Chemical Compo Weight percentag		
Cu	≥ 99.90	%
Sn	0.003 - 0.020	%
Те	0.003 - 0.020	%
P	0.001 - 0.010	%

Characteristics

CuTe0.02Sn0.02 is a solid solution strengthened copper alloy (tellurium and tin additions). The Zutphen produced thin gauge strip is primarily used for radiator fin applications. The alloy has excellent thermal properties. Hot and cold formability is good (which makes it ideal for engine cooling applications where heat transfer is critical). The addition of tellurium and tin improves mechanical properties and increases the anneal resistancy.

Mechanical Properties				
Temper	Tensile Strength	Yield Strength Minimum	Elongationg * Minimum	Hardness
	Rm	Rp _{0.2}	A _{50mm}	HV *
	MPa	MPa	%	HV
R220	220 275	80	15	53 65
R255	255 315	190	4	80 100
R260	260 330	210	3	85 110
R280	280 360	240	1	95 120
R330	330 410	300		105 130
R355	355 435	330		115 140
R390	390 475	370		125 150

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.93	g/cm³		
Thermal expansion coefficient	20 300 °C	17.7	10 ⁻⁶ /K		
Specific heat capacity		0.385	J/(g·K)		
Thermal conductivity		360	W/(m·K)		
Electrical conductivity	MS/m	53	MS/m		
Electrical conductivity	IACS	92	%		
Modulus of elasticity	GPa	120	GPa		

Cold formability	
Cold formability	Excellent (decreasing with higher hardness levels)
Hot formability	Good (decreasing with higher hardness levels)
Brazing / Soldering	Excellent
Welding	Good

^{*} Für weitere Informationen rufen Sie unseren technischen Dienst an

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

8.2. CuMgAgP

Alloy Designation	
EN	
DIN CEN/TS 13388	
UNS	C15500

Characteristics

C15500 is alloyed with Magnesium (Mg) to achieve a high strength combined with very good conductivity. It has good relaxation properties, high softening resistance and oxidation stability.

Main Applications

Electrical contacts, Connectors and Electronic Components.

Chemical Composition (Balance) Weight percentage				
Cu (incl. Ag)	≥ 99.75	%		
Mg	0.1	%		
P	0.06	%		
Ag	0.06	%		

Mechanical Properties							
Temper		Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
		Rm	Rp _{0.2}	A _{50mm}	HV *	g w rel. Bendin	bw g Radius R/T
		MPa	MPa	%	HV	Strip Thickno	ess ≤ 0.50mm
R235	O61 (soft)	235 295	105	30	-	0	0
R310	H02 (½ hard)	310 380	260	13	90 130	0	0
R385	H04 (hard)	385 440	345	6	125 145	0	0.5
R435	H06 (extra hard)	435 495	385	5	140 160	0.5	1
R450	H08 (spring)	450 505	415	4	≥ 135	0.5	1
R470	H10 (extra spring)	470 515	435	3	-	1	2

^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C						
Density		8.91	g/cm³			
Thermal expansion coefficient	20 300 °C	17.8	10 ⁻⁶ /K			
Specific heat capacity		0,385	J/(g·K)			
Thermal conductivity		350	W/(m·K)			
Electrical conductivity	MS/m	50	MS/m			
Electrical conductivity	IACS	86	%			
Thermal coefficient of electrical resistance	(0 100 °C)	2.5	10 ⁻³ /K			
Modulus of elasticity	GPa	120	GPa			

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

8.3. STOL® 78 - CuMgP

Alloy Designation	STOL® 78
EN	CuMgP
DIN CEN/TS 13388	
UNS	C18665

Chemical Composition (Balance) Weight percentage			
Cu	Rest	%	
Mg	0.6	%	
P	0.01	%	

Characteristics

STOL® 78 is a high Magnesium (Mg) alloyed material with excellent formability at medium strength and good conductivity. Typical applications are automotive, electrical and electronic connectors, relays, current carrying springs and junction boxes.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals. Electrical: Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components.

Mechanical Properties						
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw	bw g Radius R/T
	MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R380	380 460	330	14	115 145	0	0
R460	460 520	410	10	140 165	0.5	1
R520	520 570	460	8	160 180	1	2.5
R570	570 620	500	6	175 195	2.5	5
R620 **	≥ 620	550	3	≥ 190	3	6

^{*}only for information / ** Thickness max. 0.50 mm

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.81	g/cm³		
Thermal expansion coefficient	20 300 °C	17.3	10 ⁻⁶ /K		
Specific heat capacity		0.32	J/(g·K)		
Thermal conductivity		270	W/(m·K)		
Electrical conductivity	MS/m	36	MS/m		
Electrical conductivity	IACS	62	%		
Thermal coefficient of electrical resistance	(0 100 °C)	2.5	10 ⁻³ /K		
Modulus of elasticity	GPa	130	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
* For more details call our technical service	

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

8.4. STOL[®] 194 - CuFe2P

Alloy Designation	STOL® 194
EN	CuFe2P
DIN CEN/TS 13388	CW107C
UNS	C19400

Characteristics

STOL®194 is a medium strength alloy, with fine Fe precipitations. It combines high conductivity with medium strength and good relaxation properties.

Chemical Composition (Balance) Weight percentage			
Cu	Rest	%	
Fe	2.4	%	
Zn	0.1	%	
P	0.03		

Main Applications

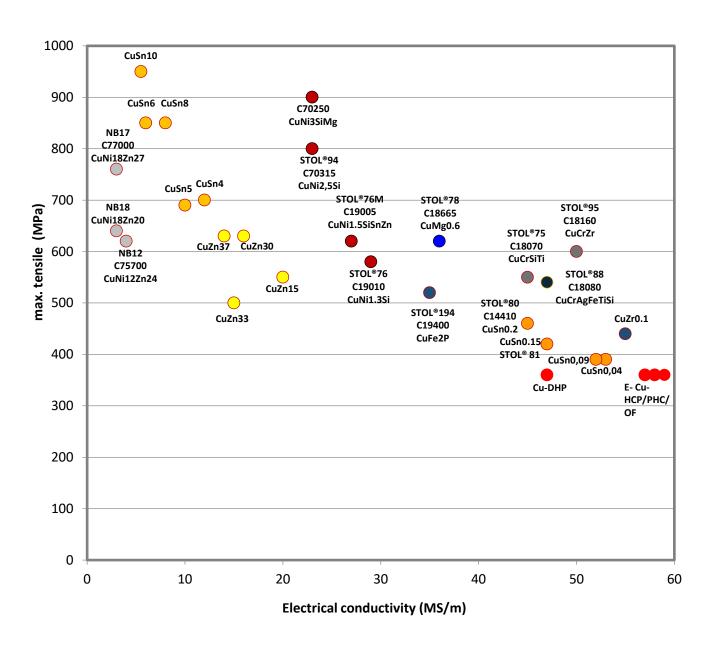
Automotive: Fuel Injectors, Electrical Connectors – Automotive.

Electrical: Circuit Breaker, Components, Contact Springs, Lead Frames,

Electrical Connectors, Cable Warp, Electrical

Springs: Clamps, Plug Contacts, Fuse Clips, Terminal.

Mechanical Prope	rties					
Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		ding 0°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bending	bw g Radius R/T
	MPa	МРа	%	HV	Strip Thickne	ess ≤ 0.50mm
R300	300 360	≤ 240	18	80 100	0	0
R360	360 430	270	15	110 135	0	0
R420	420 480	380	10	130 150	0.5	0.5
R480	480 540	430	7	140 160	0.5	0.5
R520	520 580	470	4	≥ 140	2.5	3.5


^{*} only for information

Physical Properties Typical values in annealed temper at 20 °C				
Density		8.91	g/cm³	
Thermal expansion coefficient	20 300 °C	16.3	10 ⁻⁶ /K	
Specific heat capacity		0.38	J/(g·K)	
Thermal conductivity		260	W/(m⋅K)	
Electrical conductivity	MS/m	35	MS/m	
Electrical conductivity	IACS	60	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3.31	10 ⁻³ /K	
Modulus of elasticity	GPa	125	GPa	

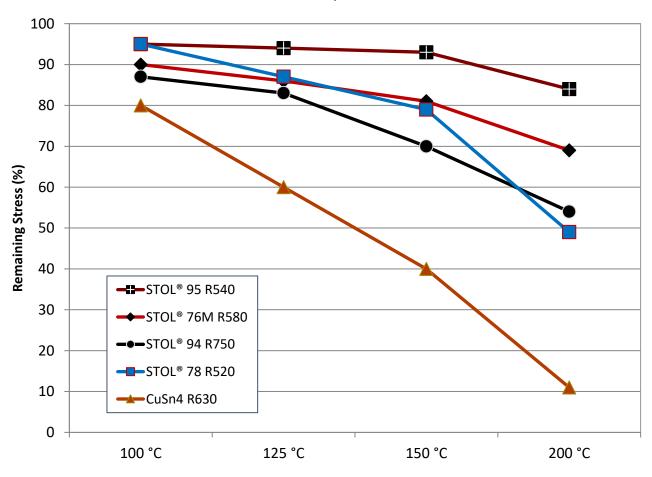
Fabrication Properties *	
Cold Forming Properties	Good
Machinability (Rating 20)	Good
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Good
Gas Shielded Arc Welding	Excellent
Laser Welding	Good
* For more details call our technical service	

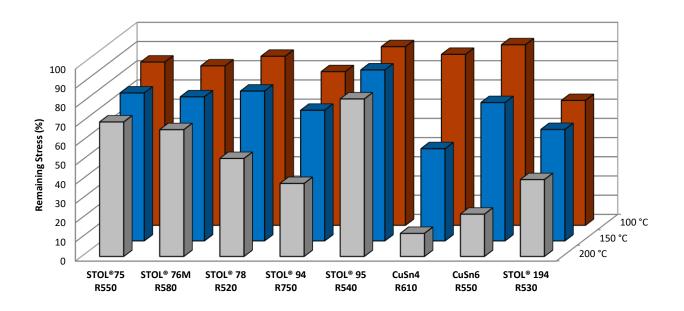
Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

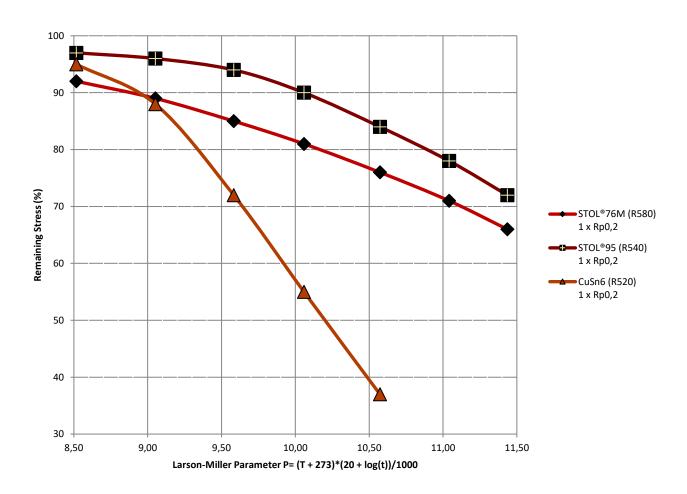
9.1. Tensile Strength vs. el. conductivity

COPPER MATERIALS

10.1.1. RELAXATION

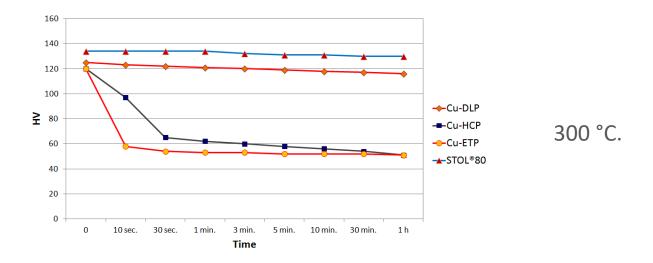


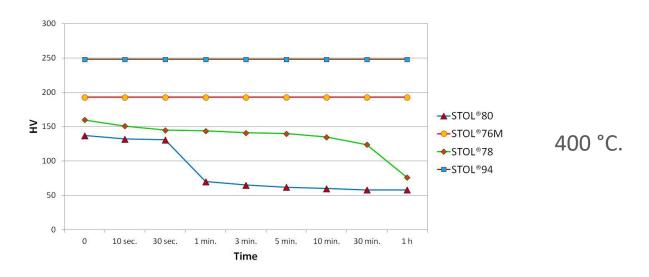

- Definition
 - Gradual decrease of stress under constant elongation.

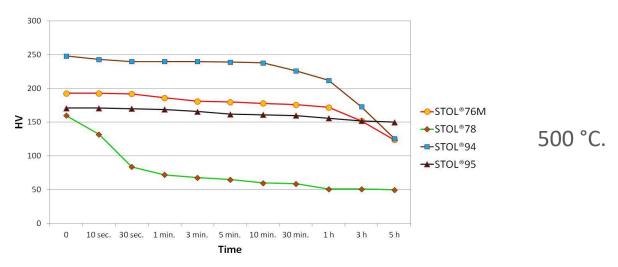

KME Method

- Cantilever Bending-Test according to ASTM E 328
- Test conditions
 - Temperatures (100° C. / 125° C. / 150° C. / 200° C.)
 - Times (50 h / 100 h / 250 h / 500 h / 1000 h) // long term - Larson-Miller Methode
 - Initial stress (50 % oder 80 % of Rp_{0.2})

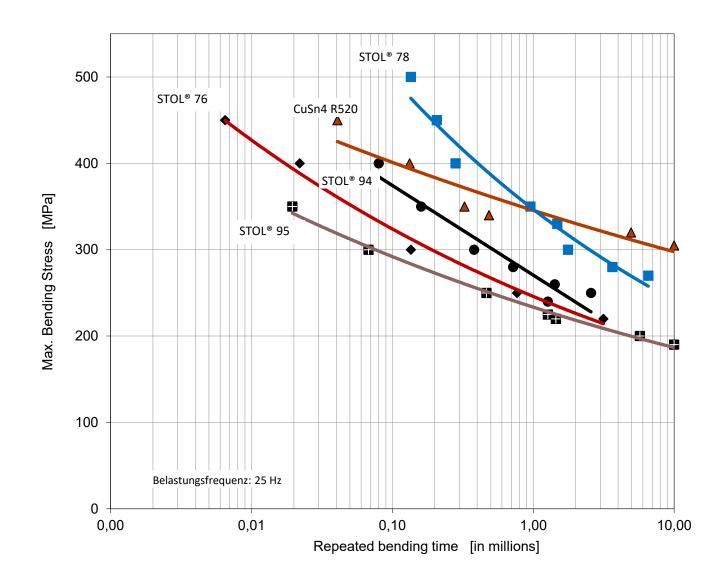
Initial Stress 0.5 x Rp_{0,2}; 1000 h; bad way

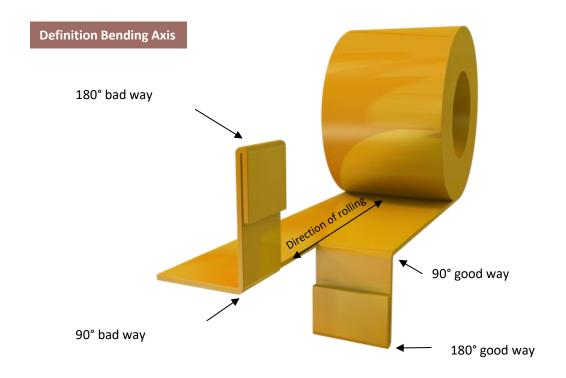


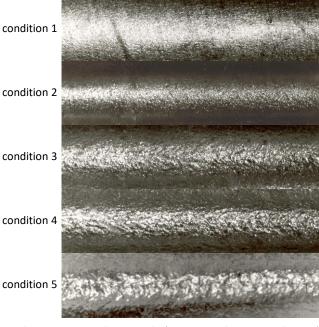



COPPER MATERIALS

10.2. SOFTENING BEHAVIOUR






COPPER MATERIALS

10.4. BENDING

Evaluation of Bending

Condition 1 smooth, no cracks (no orange skin, no rough grain)
Condition 2 rough, no cracks (no orange skin, no rough grain)
Slight orange skin, no cracks

Condition 4 orange skin, no cracks
Condition 5 strong orange skin, no cracks

condition 7

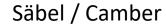
condition 8

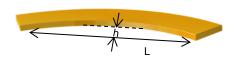
condition 9

condition 10

Condition 6 very sligth cracks
Condition 7 sligth cracks
Condition 8 cracks
Condition 9 strong cracks

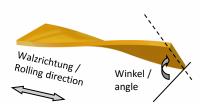
condition 6

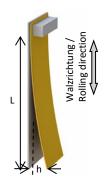

Condition 10 very strong cracks, nearly broken


Test condition, in accordance with DIN ISO 7438, scale in accordance with DIN EN 1654 plus additionally valid for 180° bending.

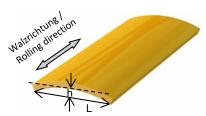
COPPER MATERIALS

10.5. DEFINITIONS





Drall / Twist


Ausbiegung / Coil set

Planheit / Eveness

Querwölbung / Transverse Flatness

KME PLATING SERVICE

To ensure the functional reliability of the contact system, today different coatings on copper materials become prescribed from our customers. We meet these specifications with our hot-dip tinning and electroplating facilities, which are available at various KME locations.

HOT-DIP TINNING ACCORDING TO DIN EN 13148 (RoHS conform)

Layers		pure tin	tin-silver (Sn28M)	thermal tin (Sn13)
Thickness range (mm)			0.10 - 1.20	
Width range (mm)			15 - 330	
	0.8 - 2	•	-	•
	1 - 3	•	•	-
	2 - 5	•	•	-
Layer thickness (μm)	3 - 7	•	•	-
(km)	4 - 8	•	•	-
	5 - 10	•	•	-
	10 - 20	•	•	-

Note

Generally, the order thickness of the strip-material is that of the uncoated strip.

The coating thickness must be added to the order thickness.

Fon +49 541 321 0

Other coating thicknesses are possible by request.

GALVANIC COATING ACCORDING TO DIN EN 14436 (RoHS conform)

Layers	Cu + Sn	Ni + Sn	Ni + Cu + Sn	Ag
		matte		
Surface finish		bright		N/A
		reflow brushed matte		
		brushed bright		
Thickness range (mm)		0.2 – 2.0 (> 2 – 5 on request	t)	
Width range (mm)	5	– 340 (> 340 – 450 on reque	est)	

info-rolled@kme.com

plating.service@kme.com

KME Plating Service

www.kme.com

- KME offers sheets, plates and discs in a wide range of dimensions.
- Our rolling mill is supplied by our own foundries.
- Our strengths lie in a rich range of more than fifty alloys.
- We can also produce plates and discs to customer specific drawings on request.
- In addition to lead-free alloys, we have a large number of special alloys in stock, including bronze and cupronickel.

Copper /	Copper allo	ys				
	nmaterial ipton	DIN-star (form		ASTM	Typical properties / applications	Manufaturing standard
Cu-ETP	CW004A	E-Cu 58 E-Cu 57	2.0065 2.0060	C11000	standard alloy for electrical components, main application in switchgear construction	DIN EN 13599 DIN EN 1652
Cu-HCP Cu-PHC	CW021A CW020A	SE-Cu	2.0070	C10300	hydrogen-resistant, very high conductivity, easy to weld	DIN EN 13599
Cu-OF	CW008A	OF-Cu	2.0040	C10200	hydrogen-resistant, very high conductivity, very easy to weld	DIN EN13599
Cu-OFE	CW009A			C10100	high purity, Cu 99.99% fur vacuum switching systems, targets	DIN EN13604
Cu-DHP	CW024A	SF-Cu	2.0090	C12200	very easy to weld, without particular conductivity requirements	DIN EN1652 DIN EN1653 AD-2000W6/2
CuAg0,1P	CW016A	Cu-Ag0.1P	2.1191	C10700	mould plates, commutator rings, electrodes	DIN EN13599
CuCrZr	CW106C	CuCrZr	2.1293	C18150	mould plates, welding equipment, furnace and mould engineering, heavy current engineering	DIN 17670
CuNi2Si	CW111C	CuNi2Si	2.0855	C18000	mould engineering, machine parts, die casting equipment	by arrangement

Products can be supplied by arrangement in compliance with other international standards such as BS, JIS and GOST.

Individual sheets made of copper – cold-rolled										
Width	Thickness (mm)									
(mm)	3 – 4.8	> 4.8 – 6.5	> 6.5 – 8	> 8 – 10	> 10 – 12	> 12 - 35				
30 – 670	max. 4000 mm long	max. 4000 mm long	max. 3100 mm long	max. 3100 mm long	max. 2500 mm long	max. 6200 mm long				
> 670 - 1000	max. 4000 mm long	max. 4000 mm long	max. 3100 mm long	max. 3100 mm long	max. 2500 mm long					
> 1000 – 1250	max. 4000 mm long	max. 3000 mm long	max. 3100 mm long	*	*					
> 1250 – 1600	max. 4000 mm long	max. 3000 mm long								
* on request										

Width	Thickness (mm)									
(mm)	3 – 5	> 5 – 12	> 12 – 20	> 20 – 60	> 60 – 200	> 200				
30 – 1000	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	max. 4000 mm long	*				
> 1000 – 2500	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	*	*				
> 2500 – 3000		*	max. 4000 mm long	max. 4000 mm long						
> 3000 – 3200			*	max. 4000 mm long						
> 3200			*	*						

Brass (le	ead free)					
•	n material ripton	DIN sta		ASTM	Typical properties/application	Manufacturing standard
CuZn5	CW500L	CuZn5	2.0220	C21000		DIN EN 1652
CuZn10	CW501L	CuZn10	2.0230	C22000	Alloy with very good cold formability; well suited to pressing, embossing, enchasing.	DIN EN 1652
CuZn15	CW502L	CuZn15	2.0240	C23000	Application: installation components for electrical engineering, construction	DIN EN 1652
CuZn20	CW503L	CuZn20	2.0250	C24000	industry, facades, jewellery Industry.	DIN EN 1652
CuZn28		CuZn28	2.0261		Alloy with very good cold formability achieved by deep-drawing, pressing,	DIN EN 1652
CuZn30	CW505L	CuZn30	2.0265	C26000	riveting, crimping. Application: cooling plates, musical instruments, every type of deep-drawn part, flat springs, ammunition.	DIN EN 1652
CuZn33	CW506L	CuZn33	2.0280	C26800	Alloy with very good cold formability, especially suitable for crimping and cold-upsetting.	DIN EN 1652
CuZn36	CW507L	CuZn36			Main alloys for the application of brass materials; highly suitable for cold forming by means of deep-drawing, pressing, upsetting, rolling, thread rolling, embossing,	DIN EN 1652
CuZn37	CW508L	CuZn37	2.0321	C27200	bending; easy to solder and weld; suitable for electrolytic polishing. Application: etching quality e.g. clock and watch faces, furniture industry.	DIN EN 1652
CuZn40	CW509L	CuZn40	2.0360	C28000	Alloy with good hot and cold formation properties; suitable for bending, riveting, upsetting and crimping and, in its soft state, for embossing as well as deep-drawing; better machinability than CuZn5 to CuZn37. Application: capacitor bases, facades, apparatus engineering, furniture fittings.	DIN EN 1652

European material	descripton	DIN-Norm (fo	ormer)	ASTM	Typical properties/application	Manufacturing Standard *	
CuZn39Pb0,5	CW610N	CuZn39Pb0.5	2.0372	C36600	Alloy with good cold and hot formability combined with adequate machinability. Application: bending, riveting, upsetting, crimping, tube sheet plates	DIN EN 1652	
CuZn39Pb2	CW612N	CuZn39Pb2	2.0380	C37700	Alloy with good cold and hot formability combined with very good machinability; limited cold formability by means of bending, riveting, crimping; good for punching. Application: turning, drilling and milling quality, tool making, fixtures, engraved plates	DIN EN 1652	
Special brass							
CuZn20Al2As	CW702R	CuZn20Al2As	2.0460	C68700	Alloy with arsenic to improve dezincification resistance. Application: capacitors, seawater applications, welded tubes.	DIN EN 1652	
CuZn28Sn1		CuZn28Sn1	2.0470	C44300	Alloy with improved dezincification resistance and conditional seawater resistance. Application: capacitors, heat exchangers, apparatus engineering.	DIN EN 1652	
CuZn38AlFeNiPbSn	CW751R	CuZn38- AlFeNiPbSn	2.0525	C47000	Alloy with higher strength combined with good machinability. Application: apparatus engineering, capacitors, heat exchangers.	DIN EN 1653	
CuZn38Sn1(As)	CW717R	CuZn38Sn1(As)	2.0530	C46400 (C46500)	Alloy with good corrosion-resistance. Application: capacitors, heat exchangers, apparatus engineering, cladding.	DIN EN 1653	

Individual sheets made of brass – cold-rolled										
Width	Thickness (mm)									
(mm)	3 – 4.8	> 4.8 – 6.5	> 6.5 – 8	> 8 - 10	> 10 - 12	> 12 - 35				
30 – 670	max. 4000 mm long	max. 4000 mm long	max. 3100 mm long	max. 3100 mm long	max. 2500 mm long	max. 6200 mm long				
> 670 - 1000	max. 4000 mm long	max. 4000 mm long	max. 3100 mm long	max. 3100 mm long	max. 2500 mm long					
> 1000 – 1250	max. 4000 mm long	max. 3000 mm long	max. 3100 mm long	*	*					
> 1250 – 1600	max. 4000 mm long	max. 3000 mm long								
* on request										

Width	Thickness (mm)									
(mm)	3 – 5	> 5 – 12	> 12 – 20	> 20 – 60	> 60 – 200	> 200				
30 – 1000	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	max. 4000 mm long	*				
> 1000 – 2500	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	*	*				
> 2500 – 3000		*	max. 4000 mm long	max. 4000 mm long						
> 3000 – 3200			*	max. 4000 mm long						
> 3200			*	*						

European descr	material ipton	DIN standard	d (former)	ASTM	Typical properties/application	Manufacturing Standard *
CuNi5- Fe1Mn		CuNi5- Fe1Mn			Alloy with good resistance against seawater, erosion and corrosion, and good weldability. Application: offshore, maritime Applications	GOST
CuNi10- Fe1Mn	CW352H	CuNi10- Fe1Mn	2.0872	C70620	Alloy with good resistance against seawater, erosion and corrosion, and good weldability. Application: apparatus engineering, tube sheet plates, seawater processing, welded tubes, maritime applications, cladding	DIN EN 1652
CuNi30- Mn1Fe	CW354H	CuNi30- Mn1Fe	2.0882	C71520	Alloy with outstanding resilience against seawater, erosion and corrosion (because it contains more nickel) and good weldability. Application: apparatus engineering, tube sheet plates, seawater processing, maritime applications, cladding	DIN EN 1652
Copper-t	in-alloys					
CuSn4	CW450K	CuSn4	2.1016	C51100	Alloy with very good cold formability and corrosion- resistance, easy to soft- and hard-solder and good electrical conductivity (within its material group); higher strengths than copper.	DIN EN 1652
CuSn5	CW451K	CuSn5		C51000	Alloy with good cold formability and corrosion- resistance; insensitive to stress corrosion cracking; Application: electrical industry, automotive engineering, facades, monuments, works of art.	DIN EN 1652
CuSn6	CW452K	CuSn6	2.1020	C51900	Alloy with good cold formability and very good corrosion-resistance; easy to solder. Application: all types of spring, especially electrical industry; flexible metal tubes, facades, monuments, works of art.	DIN EN 1652
CuSn8	CW453K	CuSn8	2.1030	C52100	Alloy with good cold formability; higher abrasion resistance, corrosion-resistance, strength, hardness than CuSn6; good sliding properties. Application: sliding elements, especially for thin-walled sliding bearing bushings and sliding strips, springs.	DIN EN 1652

European mate	rial descripton	DIN-Norm	(former)	ASTM	Typical properties/application	Manufacturing Standard	
CuAl8Fe3Sn				C61300	main properties: alloys with high strengths compared with copper materials (including at		
CuAl8Fe3	CW303G	CuAl8Fe3		C61400	higher temperatures) combined with outstanding corrosion-resistance against neutrals and acids, watery media and	DIN EN 1652	
CuAl11Fe3		CuAl11Fe3		C62400	seawater; good resilience against scaling as well as erosion and cavitation; we can gladly advise on special requirements and help you select the right alloy.		
CuAl9Mn2		CuAl9Mn2	2.0960		Application: highly stressed bearing components, sliding strips	DIN EN 1652	
CuAl10- Fe3Mn2	CW306G	CuAl10- Fe3Mn2	2.0936	CA104	Application: chemical apparatus engineering, scaling-resistant parts.	BS	
CuAl10- Ni5Fe4	CW307G	CuAl10- Ni5Fe4	2.0966	C63000	Application: maximum-strength parts, highly stressed bearing components, wearing parts, ship propellers, chemical apparatus engineering, tube sheet plates, maritime applications, potash industry.	DIN EN 1652	
Special allo	oys						
CuAsP		CuAsP	2.1491	only BS C107	Higher corrosion-resistance and less tendency to scale than pure copper. Application: fireboxes.	Only BS C107	
CuSi3Mn		CuSi3Mn	2.1525	C66500	Apparatus engineering, heat exchangers, chemical industry, construction industry, crafts.		
CuMn2		CuMn2	2.1363		Chemical Apparates Engineering.		
C67000	CW704R			C67000	High strength, high static and dynamic loading capacity.		

Cupronickel, dimensions											
Width	Thickness (mm)										
(mm)	3 – 5	> 5 – 12	> 12 – 20	> 20 – 60	> 60 – 200	> 200					
30 – 1000	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	max. 4000 mm long	*					
> 1000 – 2500	max. 6000 mm long	max. 8000 mm long	max. 4000 mm long	max. 6200 mm long	*	*					
> 2500 – 3000		*	max. 4000 mm long	max. 4000 mm long							
> 3000 – 3200			*	max. 4000 mm long							
> 3200			*	*							
* on request		•	•	•	•						

Width		Thickness (mm)									
(mm)	0 – 1250	> 1250 – 1600	> 1600 – 2000	> 2000 – 3000	> 3200						
3 – 5	max. 3050 mm long										
> 5 – 12	max. 3050 mm long	max. 3050 mm long	*								
> 12 – 20	max. 3050 mm long	max. 3050 mm long	max. 3050 mm long	*							
> 20 – 60	max. 4000 mm long	max. 4000 mm long	max. 4000 mm long	*	*						
> 60 - 130	max. 4000 mm long	max. 4000 mm long	max. 4000 mm long								
> 200	*	*			*						

13.1. WAREHOUSING OF OUR PRODUCTS

The storage of our blank and coated strip and stamped products (hereinafter referred to as "products") may influence their quality.

Insofar as the above mentioned products are stored at consistent room temperature in a dry atmosphere and in undamaged packaging, the following applies with regard to mechanical properties, surface condition and workability:

Mechanical properties

The mechanical product properties (including roughness) for our products are in any case given at least for the duration of the legally required warranty period; during this period, the layer thickness, verifiable using the X-ray fluorescence method, also remains the same.

Surface condition

Products protected "preserved" with oil are protected against oxidation for up to three months.

Bare surfaces passivated with Benzotriazol or other media are protected against oxidation for up to six months.

Finished surfaces oxidize in the Angstrom area and can increasingly develop a slightly yellowish to black layer. However, when processed within one year, this layer is regularly removed by the relative movement during plugging due to the contact forces applied.

Processing of products with coating

Solderability/wettability can be impaired by the diffusion-controlled growth of the intermetallic phases, especially with thin tin layers. For precious metal coatings (e.g. with silver or gold) of products, we would recommend passivation.

If the storage conditions described above are observed, perfect processing can be guaranteed for up to half a year, depending on the coating process. Beyond that, however, the manufacturer's specifications of the respective coater have priority.

Storage instructions

Copper and copper alloys are sensitive to humidity, and moreover to condensation in certain atmospheres. In this contex, care has to be taken to avoid extreme temperature and/or humidity conditions.

- Ensure that the relative humidity remains below 60 % (non-codensing)
- Protect the material against solar irradiation.
- Keep protect from rain.
- Keep in closed original packing.
- Prevent contact to other chemical products.
- Keep protected against water penetration.
- Ensure that the information on the labels remains visible.

For the purposes of completeness only, we would like to point out that the above-mentioned Information does not extend to further processed products. Influences resulting from further processing - at your site or in the further supply chain - do not fall within our area of responsibility and must be taken into account on your part.

CORROSION RESISTANCE

13.2. ALLOYS

- + Resistance
- o Less resistance
- x Not resistance
- ^ Insensitive

	Industry atmosphere	natural atmosphere	Neutral to alkaline aqueous solutions	Nicht oxidierend wirkenden Säuren	Non-oxidising acids	Neutral or alkaline salt solutions	Organic acids	Drinking and process water	Ammonium- containing solutions
Copper		+	+	+	+			+	х
CuZn10/15		+	+			+		+	
CuZn30/33/36/37		+				+		+	
CuSn4/5/6/8/10	+	+							
CuNi10Fe1Mn	+	+		+			+		
C70250		+				+		+	
CuSn2Zn10 / CuSn3Zn9		+	+	+	+				
STOL® 75		+				+		+	
STOL® 88		+				+		+	
STOL® 76 / 76M		+				+		+	
STOL® 78		+				+		+	
STOL® 80 / 81	+	+	+	+	+			+	
STOL® 94		+	+					+	
STOL® 95	+	+		+	+			+	
STOL® 194	+	+		+		+		+	

	Wet ammonia	Cyanide	Gases containing halogens	Concentrated hydrohalogen acids	Oxidising acids	Moist sulphur compounds	Sulphur-hydrogen	Seawater	Stress corrosion cracking
Copper	х	х		х	х		х	х	
CuZn10/15	х				х	х			
CuZn30/33/36/37					х	х			
CuSn4/5/6/8/10	х	х	х				х	+	
CuNi10Fe1Mn			+				+		٨
C70250	х	х	х		х	х	х		
CuSn2Zn10 / CuSn3Zn9	х	х	х				х	+	
STOL® 75	х	х	х				х		+
STOL® 88	х	х	х				х		+
STOL® 76 / 76M	х	х	х		х	х			+
STOL® 78	х	х	х				х		+
STOL® 80 / 81	х	х	х		х		х		
STOL® 94	х	х	х		х	х			+
STOL® 95	х	х	х		х		х	х	+
STOL® 194	х	х	х		х		х		+

KME - RESEARCH & DEVELOPMENT

COPPER: THE MATERIAL OF THE FUTUR

MANIFOLD DEVELOPMENT POTENTIAL

Resolute market and customer orientation promotes visions and growth. In order to ensure the three core values of KME: innovation, efficiency and quality, research and development takes utmost priority.

Customers in the most various application fields rightly demand highest standards. Our continuous research is therefore oriented to market conditions and customer requirements, always enabling us to develop new and improved materials, surfaces and processes for the manufacture and application of copper and copper alloys.

Copper is a unique material with an extraordinarily high development potential. Our comprehensively equipped laboratory and development areas are part of our management system certified according to IATF 16949. Here, qualified teams of engineers work on issues along and even beyond the entire value chain of copper – from the raw material over alloy production right down to the production of semi-finished copper products and from the finished part though to market application.

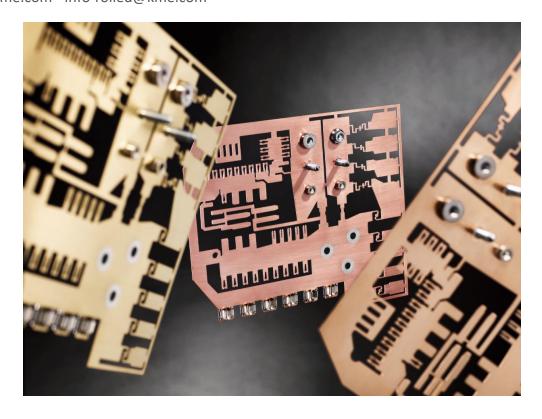
In our lab facilities, the engineering of alloys and casting techniques can be studied on a production-related scale in realistic operating conditions and with in-depth scientific expertise. Trial and experimental castings in magnitudes from a few kilograms to several tons provide fast and reliable development results.

All required tests and analysis can be conducted: Material and failure analysis, corrosion investigations, material tests (for the determination of mechanical and physical properties) and chemical analysis.

KME maintains cooperation projects with companies, universities and research facilities worldwide, and actively supports both national and international research projects. Furthermore, we proactively participate in the standardisation of products and processes. We engage ourselves regularly in supporting students' training and theses. KME encourages employees to think innovatively, thus promoting the quest for technical innovations, sustainability and growth. This process is enhanced by the extensive activities in the field of research and development.

Marketing

Sabine Kahmann	+49 541 - 321 1548	sabine.kahmann@kme.com
Sabrina Guske	+49 541 - 321 1546	sabrina.guske@kme.com


Technical Service

+49 3476 - 89 2375	matthias.dieckmann@kme.com
+31 575 594 574	jos.geluk@kme.com
+49 541 - 321 3520	marc.kovermann@kme.com
+49 541 - 321 4220	christian.schowe@kme.com
+49 2402 - 105 351	albert.rumbach@kme.com
	+31 575 594 574 +49 541 - 321 3520 +49 541 - 321 4220

Due to continued improvements within our production process, the details stated in our brochure can not be guaranteed.

We reserve the right to update or amend our products, without prior notification. We suggest that you obtain confirmation of our product details / specifications prior to committing to specific alloys.

www.kme.com · info-rolled@kme.com

