4.4. STOL[®] 80 - CuSn0.20

ENGINEERING COPPER SOLUTIONS

Alloy Designation	STOL [®] 80
EN	CuSn0,2
DIN CEN/TS 13388	
UNS	C14410

Chemical Composition Weight percentage	(Balance)	
Cu	Rest	%
Sn	0.2	%
Р	0.01	%

Characteristics

STOL® 80 is a low Tin (Sn) special alloy that combines low cost with highest conductivity. The total cost for finish products are often equal to brass due to excellent conditions for stamping scrap.

Typical applications are male connectors and fuse boxes.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals. Electrical: Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components.

Mechanical Properties (EN 1652)

Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness		nding 90°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendir	bw ng Radius R/T
	MPa	MPa	%	HV	Strip Thickn	ess ≤ 0.50mm
R250	≥ 250	≤ 140	20	60 80	0	0
R300	300370	270	10	80100	0	0
R360	360430	310	7	110 130	0	0
R420	420490	370	5	120 150	1	1
R460	≥ 460	410	4	≥ 135	1	1.5

*only for information

Physical Properties

Typical values in annealed temper at 20 °C				
Typical values in annealed t				
Density		8.94	g/cm³	
Thermal expansion coefficient	20 300 °C	17.3	10 ⁻⁶ /K	
Specific heat capacity		0.385	J/(g·K)	
Thermal conductivity		330	W/(m∙K)	
Electrical conductivity	MS/m	44	MS/m	
Electrical conductivity	IACS	76	%	
Thermal coefficient of electrical resistance	(0 100 °C)	3.3	10 ⁻³ /K	
Modulus of elasticity	GPa	120	GPa	

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Fair
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Fair
Gas Shielded Arc Welding	Excellent
Laser Welding	Good
* Example of the colling of the basis of the	

* For more details call our technical service