C15500

CuMgAgP

Alloy Designation		
EN		
DIN CEN/TS 13388		
UNS	C15500	
Chemical Composition (Balance)		

Weight percentage		
Cu (incl. Ag)	≥ 99.75	%
Mg	0.1	%
Р	0.06	%
Ag	0.06	%

Characteristics

C15500 is alloyed with Magnesium (Mg) to achieve a high strength combined with very good conductivity. It has good relaxation properties, high softening resistance and oxidation stability.

Main Applications

Electrical contacts, Connectors and Electronic Components.

Mechanical Properties (EN 1652)							
Temper		Tensile Yield Streng Strength Minimum		Elongation Minimum	Hardness	Bending 90°	
		Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Bendin	bw g Radius R/T
		MPa	MPa	%	HV	Strip Thickne	ess ≤ 0.50mm
R235	O61 (soft)	235 295	105	30	-	0	0
R310	H02 (½ hard)	310 380	260	13	90130	0	0
R385	H04 (hard)	385 440	345	6	125 145	0	0.5
R435	H06 (extra hard)	435 495	385	5	140 160	0.5	1
R450	H08 (spring)	450 505	415	4	≥ 135	0.5	1
R470	H10 (extra spring)	470 515	435	3	-	1	2

* only for information

Physical Properties Typical values in annealed temper at 20 °C			
Density		8.91	g/cm³
Thermal expansion coefficient	20 300 °C	17.8	10⁻ ⁶ /K
Specific heat capacity		0,385	J/(g·K)
Thermal conductivity		350	W/(m⋅K)
Electrical conductivity	MS/m	50	MS/m
Electrical conductivity	IACS	86	%
Thermal coefficient of electrical resistance	(0 100 °C)	2.5	10 ⁻³ /K
Modulus of elasticity	GPa	120	GPa

Electrical Conductivity

ENGINEERING COPPER SOLUTIONS

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
* For more details call our technical service	

Corrosion Resistance *

Practically resistant against stress corrosion cracking

Softening Resistance

After short time heat treatment Vickers Hardness is measured. The diagram shows typical values.

Bend Fatigue (at room temperature)

The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 10^7 load cycles without crack is measured. Dependent on the temper class it is approximately 1/3 of the tensile strength R_m .

Available delivery forms *
Strips in coils
Traverse-wound coils with drum weights up to 1.5 t
TECSTRIP [®] _multicoil up to 2.5 t

Hot-Dip-Tinned strips in thickness range 0.10 up to 1.20 mm

* For more details call our sales service

Due to continued improvements within our production process, the details stated in our brochure can not be guaranteed. We reserve the right to update or amend our products, without prior notification. We suggest that you obtain confirmation of our product details / specifications prior to committing to specific alloys.