8.4. CuSn2Zn10

Legierungsbezeichnung	
EN	-
DIN CEN/TS 13388	-
UNS	C42500

Chemische Zusammensetzung (Richtwerte) Gewichtsanteil in Prozent		
Cu	87 90	%
Sn	1.5 3	%
Zn	Rest	%

Eigenschaften

C42500 hat ausgezeichnete Kaltumformeigenschaften, gute Leitfähigkeit in Verbindung mit hoher Festigkeit und Härte. Die Korrosionsbeständigkeit, insbesondere gegen Seewasser und Industrieatmosphären, ist gut und die Anfälligkeit für Spannungsrisskorrosion ist gering. Die Federeigenschaften sind gut, so dass es für Anwendungen wie Federn, Steckverbinder und Kontakte verwendet wird.

Hauptanwendungsbereiche

Automotive: Schalter und Relais, Kontakte, Steckverbinder, Klemmen. **Elektrotechnik:** Schalter und Relais, Kontakte, Steckverbinder, Klemmen Komponenten für die Elektroindustrie, Stanzteile.

Mechanische Eigenschaften (EN 1652)						
Zustand	Zugfestigkeit	Streckgrenze Minimum	Dehnung Minimum	Härte	•	arkeit O°
	Rm	Rp _{0.2}	A _{50mm}	HV *	gw rel. Biege	bw radius R/T
	MPa	MPa	%	HV	Banddicke	≤ 0.50mm
R320	320 380	≤ 230 *	25	80 110	0	0
R380	380 430	200 *	16	110 140	0	0
R430	430 520	330 *	6	140 170	0	0
R510	510 600	430 *	3	160 190	0	1
R580	580 690	520 *	-	180 210	1	2
R660	≥ 660	610 *	-	≥ 200	-	-

^{*} nur zur Information

Physikalische Eigenschaften Typische Werte im geglühten Zustand bei 20°C				
Dichte	en zustanu bei zu	8.81	g/cm³	
		0.01	6/ 6/11	
Thermischer Ausdehnungskoeffizient	20 300 °C	18.4	10 ⁻⁶ /K	
Spezifische Wärmekapazität		0.38	J/(g·K)	
Wärmeleitfähigkeit		120	W/(m·K)	
Elektrische Leitfähigkeit	MS/m	15	MS/m	
Elektrische Leitfähigkeit	IACS	25	%	
Thermischer Koeffizient des elektrischen Widerstands	(0 100 °C)	1.0	10 ⁻³ /K	
E-Modul	GPa	120	GPa	

Herstellungseigenschaften *	
rierstenangseigensenarten	
Kaltumformungseigenschaften	Ausgezeichnet
Zerspanbarkeit (Stufe 20)	Weniger geeignet
Galvanische Eigenschaften	Gut
Feuerverzinnungseigenschaften	Ausgezeichnet
Weichlöten	Ausgezeichnet
Widerstandsschweißen	Weniger geeignet
Schutzgasschweißen	Ausgezeichnet
Laserschweißen	Ausgezeichnet

^{*} Für weitere Informationen rufen Sie unseren technischen Dienst an

Aufgrund kontinuierlicher Verbesserungen innerhalb unseres Produktionsprozesses können die in unserer Broschüre angegebenen Details nicht garantiert werden. Wir behalten uns das Recht vor, unsere Produkte ohne vorherige Ankündigung zu aktualisieren oder zu ändern. Wir empfehlen Ihnen, eine Bestätigung unserer Produktdetails / Spezifikationen einzuholen, bevor Sie sich auf bestimmte Legierungen festlegen.

©KME - www.kme.com Page 43