# C11000

# 2.1. Cu-ETP



## ENGINEERING COPPER SOLUTIONS

| Alloy Designation |        |  |  |
|-------------------|--------|--|--|
| EN                | Cu-ETP |  |  |
| DIN CEN/TS 13388  | CW004A |  |  |
| UNS               | C11000 |  |  |

≥ 99.90

≤ 0.040

%

%

**Chemical Composition (Balance)** 

Weight percentage

Cu

0

| 01 |     |    |    |   |   |    | •   |
|----|-----|----|----|---|---|----|-----|
|    | nai | 'a | CT | ρ | т | ST | ICS |
|    |     |    |    | - |   |    | 100 |

**Cu-ETP** is an oxygen containing copper which has a very high electrical and thermal conductivity. It has excellent forming properties. Due to its oxygen content soldering and welding properties are limited.

### **Main Applications**

**Electrical:** Transformer Coils, Switches, Terminals, Contacts, Radio Parts, Busbars, Terminal Connectors, Conductors, Stranded Conductors, Cable Strip

Industrial: Printed circuit boards, Stamped parts, Pressure Vessels, Chemical Process Equipment, Chlorine Cells, Chimney Cap Screens, Heat Exchangers, Printing Rolls, Anodes, Rotating Bands, Kettles, Pans, Vats, Heat sinks

| Mechanical Properties (EN 1652) |                     |                           |                       |          |                    |                    |
|---------------------------------|---------------------|---------------------------|-----------------------|----------|--------------------|--------------------|
| Temper                          | Tensile<br>Strength | Yield Strength<br>Minimum | Elongation<br>Minimum | Hardness | Bendability<br>90° |                    |
|                                 | Rm                  | Rp <sub>0.2</sub>         | A <sub>50mm</sub>     | HV *     | gw<br>rel. Bendin  | bw<br>g radius R/T |
|                                 | MPa                 | MPa                       | %                     | HV       | Strip thickne      | ess ≤ 0.50mm       |
| R220                            | 220260              | ≤ 140 *                   | 33                    | 40 65    | 0                  | 0                  |
| R240                            | 240300              | 180                       | 8                     | 65 95    | 0                  | 0                  |
| R290                            | 290360              | 250                       | 4                     | 90110    | 0                  | 0.5                |
| R360                            | ≥ 360               | 320                       | 2                     | ≥ 110    | 1                  | 2                  |

\* only for information

#### Physical Properties

| Typical values in annealed temper at 20 °C   |            |       |                     |  |  |
|----------------------------------------------|------------|-------|---------------------|--|--|
| Density                                      |            | 8.92  | g/cm³               |  |  |
| Thermal expansion coefficient                | 20 300 °C  | 17.7  | 10 <sup>-6</sup> /K |  |  |
| Specific heat capacity                       |            | 0.394 | J/(g·K)             |  |  |
| Thermal conductivity                         |            | 394   | W/(m·K)             |  |  |
| Electrical conductivity                      | MS/m       | 58    | MS/m                |  |  |
| Electrical conductivity                      | IACS       | 100   | %                   |  |  |
| Thermal coefficient of electrical resistance | (0 100 °C) | 3.7   | 10 <sup>-3</sup> /K |  |  |
| Modulus of elasticity                        | GPa        | 130   | GPa                 |  |  |

| Fabrication Properties *  |               |
|---------------------------|---------------|
| Cold Forming Properties   | Excellent     |
| Machinability (Rating 20) | Less suitable |
| Electroplating Properties | Excellent     |
| Hot Tinning Properties    | Excellent     |
| Soft Soldering, Brazing   | Excellent     |
| Resistance Welding        | Less suitable |
| Gas Shielded Arc Welding  | Less suitable |
| Laser Welding             | Less suitable |

During heating in reducing atmosphere hydrogen can penetrate inside the copper and react with Cu-Oxide to water vapour. Its pressure can cause embrittlement.

\* For more details call our technical service

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.