CuZn39Pb2

ENGINEERING COPPER SOLUTIONS

Alloy Designation	
EN	CuZn39Pb2 CW612N
DIN CEN/TS 13388	2.0380
JIS	C3771
BS	CZ120
UNS	C37700

Chemical Composition (Balance) Weight percentage

Cu	5960	%
Zn	Rest	%
Pb	1.62.5	%
Ni	0.3	%
Sn	0.2	%

Mechanical Properties (EN 1652)

Characteristics

CuZn39Pb2 is the most used alloy for machining operations. It has excellent hot working and forging properties. Cold forming is possible only to a minor extend.

Main Applications

Architecture: Ornamental Trim. Consumer: Jewelry, Emblems, Plaques, Medallions.

Electrical: Components for the Electrical Industry, Connectors, Rotor Bars, AC Motors.

Fasteners Industrial: Metal Goods, Base for Vitreous Enamel, Base for Gold Plate.

Ordnance: Primers, Small Arm Ammunition: Primer Caps, Bullet Jackets, Fuse Caps, Firing Pin Support Shells, Bullet. **Other:** Coins, Tokens, Medals.

Temper	Tensile Strength Rm	Yield Strength Minimum Rp _{0.2}	Elongation Minimum A _{50mm}	Grain Size	Hardness HV *
	MPa	MPa	%		HV
R360	360 440	≤ 270 *	≥ 30	≤ 15 15 30 20 40 35 70	90120
R420	420500	≥ 270 *	≥ 12		120150
R490	490570	≥ 420 *			150 150
R560	≥ 510	≥ 510 *			≥ 175

* only for information

Physical Properties Typical values in annealed temper at 20 °C Density 8.45 g/cm³ Thermal expansion 20..300°C 21.0 10⁻⁶/K coefficient Specific heat capacity 0.377 J/(g⋅K) Thermal conductivity 117 W/(m⋅K) **Electrical conductivity** MS/m 14 MS/m **Electrical conductivity** IACS 24 % Thermal coefficient of (0 .. 100 °C) 1.6 10⁻³/K electrical resistance 102 GPa Modulus of elasticity GPa

Electrical Conductivity

C37700

» KME

CuZn39Pb2

ENGINEERING
COPPER SOLUTIONS

Fabrication Properties *	
Cold Forming Properties	Fair
Machinability (Rating 20)	Excellent
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent/Fair
Resistance Welding	Fair
Gas Shielded Arc Welding	Less Suitable
Laser Welding	Fair
* For more details call our technical service	

* For more details call our technical service

Corrosion Resistance *

Resistant to:

CuZn39Pb2 has a good resistance to water, water vapour, different saline solutions, many organic liquids. Land, sea and industrial atmosphere.

Not resistant to:

Under certain conditions (water with high chlorine-content and low carbonate-hardness) a form of corrosion called "dezincification" can occur.

Furthermore this alloy tends in cold-formed temper under internal and/or external tensile stress when aggressive agents like ammoniac, amine ammonia-salts are present to "stress corrosion cracking". Tensile stress can be applied after fabrication during assembly or installation.

A heat treatment can help to avoid stress corrosion cracking. Semi-finished products can get a stress relieving annealing treatment or softening treatment.

Bend Fatigue (at room temperature)

The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 10^7 load cycles without crack is measured. Dependent on the temper class it is approximately 1/3 of the tensile strength R_m.

Available delivery forms *
Strips in coils
Traverse-wound coils with drum weights up to 1.5 t
TECSTRIP®_multicoil up to 2.5 t
Hot-Dip-Tinned strips in thickness range 0.10 up to 1.20 mm
* For more details call our sales service

C37700 - CuZn39Pb2_01_2021