6.2. STOL® 76 - CuNiSi

Alloy Designation	STOL® 76
EN	CuNiSi
DIN CEN/TS 13388	
UNS	C19010

(Balance)	
Rest	%
1.3	%
0.25	%
0.03	%
	Rest 1.3 0.25

Characteristics

STOL® 76 is a CuNiSi alloy that can be hardened by cold forming and by precipitation of NiSi-phases during a heat treatment. It has excellent bendability, excellent hot and cold forming properties, a high strength and a good corrosion resistance.

Due to the NiSi-precipitations the relaxation properties, even at temperatures up to 150 $^{\circ}$ C are excellent. The electrical and thermal conductivity is good. Welding, soldering and brazing properties are good too.

Main Applications

Automotive: Switches and Relays, Contacts, Connectors, Terminals. **Electrical:** Switches and Relays, Contacts, Connectors, Terminals, Components for the electrical industry, Stamped parts, Semiconductor Components, Junction Boxes.

Mechanical Properties (EN 1652)								
Temper	Temper	Tensile Strength	Yield Strength		gation imum	Hardness		ding 0°
	H = Cold worked TM = Mill hardened	Rm	Minimum Rp _{0.2}	A ₅	0mm	HV **	gw rel. Bendin	bw g Radius R/T
		MPa	MPa		%	HV	Strip Thickne	ess ≤ 0.50mm
R360	H01 (¼ hard)	360 430	300	12	14 *	100 130	0	0
R410	H02 (½ hard)	410 470	360	9	11 *	125 155	0	0
R460	H04 (¾ hard)	460 520	410	7	9 *	135 165	0.5	1
R520	H06 (extra hard)	520 580	460	5	7 *	145 175	1	2
R520	TM06 (XHM)	520 590	440		8	155 180	0.5	0.5
R580	TM08 (SHM)	580 650	520		9	160 210	1	1

^{*} values for stress relieved qualities / ** only for information

Physical Properties Typical values in annealed temper at 20 °C					
Density		8.93	g/cm³		
Thermal expansion coefficient	20 300 °C	16.8	10 ⁻⁶ /K		
Specific heat capacity		0.377	J/(g·K)		
Thermal conductivity		260	W/(m⋅K)		
Electrical conductivity	MS/m	35	MS/m		
Electrical conductivity	IACS	60	%		
Thermal coefficient of electrical resistance	(0 100 °C)	2	10 ⁻³ /K		
Modulus of elasticity	GPa	135	GPa		

Fabrication Properties *	
Cold Forming Properties	Excellent
Machinability (Rating 20)	Less suitable
Electroplating Properties	Excellent
Hot Tinning Properties	Excellent
Soft Soldering, Brazing	Excellent
Resistance Welding	Less suitable
Gas Shielded Arc Welding	Excellent
Laser Welding	Fair
* For more details call our technical service	

Due to continuous improvements within our production process, the details given in our brochure cannot be guaranteed. We reserve the right to update or change our products without prior notice. We recommend that you seek confirmation of our product details / specifications before committing to specific alloys.

©KME - www.kme.com Page 35